Derivation and quantitative analysis of the differential self-interrogation Feynman-alpha method

  • J. Anderson
  • L. Pál
  • I. Pázsit
  • D. Chernikova
  • S. Pozzi
Regular Article


A stochastic theory for a branching process in a neutron population with two energy levels is used to assess the applicability of the differential self-interrogation Feynman-alpha method by numerically estimated reaction intensities from Monte Carlo simulations. More specifically, the variance to mean or Feynman-alpha formula is applied to investigate the appearing exponentials using the numerically obtained reaction intensities.


Fast Neutron Fuel Assembly Stochastic Theory Thermal Particle Spend Fuel Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. Kunz, J.T. Caldwell, J.D. Atencuo, Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors, US Patent 4,483,816, March (1982).Google Scholar
  2. 2.
    S. Croft, B. Mc Elroy, L. Bourva, M. Villani, Evaluation of the Minimum Detectable Quantities of Fissile Material in a Differential Die-Away Chamber, Waste Management Conf. Proc. (2003).Google Scholar
  3. 3.
    K.A. Jordan, Detection of Special Nuclear Material in Hydrogenous Cargo Using Differential Die-Away Analysis, PhD Thesis, Department of Nuclear Engineering, University of California, Berkeley (2006).Google Scholar
  4. 4.
    K.A. Jordan, T. Gozani, Nucl. Instrum. Methods B 261, 365 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    K.A. Jordan, T. Gozani, J. Vujic, Nucl. Instrum. Methods A 598, 436 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    H.O. Menlove, S.H. Menlove, S.T. Tobin, Nucl. Instrum. Methods A 602, 588 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    L. Pál, I. Pázsit, Eur. Phys. J. Plus 126, 20 (2011).CrossRefGoogle Scholar
  8. 8.
    I. Pázsit, L. Pál, A stochastic model of the differential die-away analysis (DDAA) method, in Proceedings 51st INMM 11 - 15 July, Baltimore, USA (2010).Google Scholar
  9. 9.
    R. Soule et al., Nucl. Sci. Eng. 148, 124 (2004).Google Scholar
  10. 10.
    J.-L. Muñoz-Cobo et al., Ann. Nucl. Energy 38, 590 (2011).CrossRefGoogle Scholar
  11. 11.
    C. Berglöf et al., Ann. Nucl. Energy 38, 194 (2011).CrossRefGoogle Scholar
  12. 12.
    J. Anderson, I. Pázsit, L. Pál, On the Feynman-alpha formula for fast neutrons, in Proceedings 33rd ESARDA 16-20 May, Budapest, Hungary (2011).Google Scholar
  13. 13.
    I. Pázsit, L. Pál, Neutron Fluctuations - A Treatise on the Physics of Branching Processes (Elsevier Ltd., 2008).Google Scholar
  14. 14.
    I. Pázsit, Y. Yamane, Ann. Nucl. Energy 25, 667 (1998).CrossRefGoogle Scholar
  15. 15.
    J.F. Breismeister (Editor), MCNP, General Monte Carlo N-Particle Transport Code, Version 4, Los Alamos National Laboratory Report, LA - 12625 (1995).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer 2012

Authors and Affiliations

  • J. Anderson
    • 1
  • L. Pál
    • 2
  • I. Pázsit
    • 1
    • 3
  • D. Chernikova
    • 1
  • S. Pozzi
    • 3
  1. 1.Department of Nuclear EngineeringChalmers University of TechnologyGöteborgSweden
  2. 2.KFKI Atomic Energy Research InstituteBudapest 114Hungary
  3. 3.Department of Nuclear Engineering and Radiological SciencesUniversity of MichiganAnn ArborUSA

Personalised recommendations