Skip to main content
Log in

Derivation and quantitative analysis of the differential self-interrogation Feynman-alpha method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A stochastic theory for a branching process in a neutron population with two energy levels is used to assess the applicability of the differential self-interrogation Feynman-alpha method by numerically estimated reaction intensities from Monte Carlo simulations. More specifically, the variance to mean or Feynman-alpha formula is applied to investigate the appearing exponentials using the numerically obtained reaction intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kunz, J.T. Caldwell, J.D. Atencuo, Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors, US Patent 4,483,816, March (1982).

  2. S. Croft, B. Mc Elroy, L. Bourva, M. Villani, Evaluation of the Minimum Detectable Quantities of Fissile Material in a Differential Die-Away Chamber, Waste Management Conf. Proc. (2003).

  3. K.A. Jordan, Detection of Special Nuclear Material in Hydrogenous Cargo Using Differential Die-Away Analysis, PhD Thesis, Department of Nuclear Engineering, University of California, Berkeley (2006).

  4. K.A. Jordan, T. Gozani, Nucl. Instrum. Methods B 261, 365 (2007).

    Article  ADS  Google Scholar 

  5. K.A. Jordan, T. Gozani, J. Vujic, Nucl. Instrum. Methods A 598, 436 (2008).

    Article  ADS  Google Scholar 

  6. H.O. Menlove, S.H. Menlove, S.T. Tobin, Nucl. Instrum. Methods A 602, 588 (2009).

    Article  ADS  Google Scholar 

  7. L. Pál, I. Pázsit, Eur. Phys. J. Plus 126, 20 (2011).

    Article  Google Scholar 

  8. I. Pázsit, L. Pál, A stochastic model of the differential die-away analysis (DDAA) method, in Proceedings 51st INMM 11 - 15 July, Baltimore, USA (2010).

  9. R. Soule et al., Nucl. Sci. Eng. 148, 124 (2004).

    Google Scholar 

  10. J.-L. Muñoz-Cobo et al., Ann. Nucl. Energy 38, 590 (2011).

    Article  Google Scholar 

  11. C. Berglöf et al., Ann. Nucl. Energy 38, 194 (2011).

    Article  Google Scholar 

  12. J. Anderson, I. Pázsit, L. Pál, On the Feynman-alpha formula for fast neutrons, in Proceedings 33rd ESARDA 16-20 May, Budapest, Hungary (2011).

  13. I. Pázsit, L. Pál, Neutron Fluctuations - A Treatise on the Physics of Branching Processes (Elsevier Ltd., 2008).

  14. I. Pázsit, Y. Yamane, Ann. Nucl. Energy 25, 667 (1998).

    Article  Google Scholar 

  15. J.F. Breismeister (Editor), MCNP, General Monte Carlo N-Particle Transport Code, Version 4, Los Alamos National Laboratory Report, LA - 12625 (1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J., Pál, L., Pázsit, I. et al. Derivation and quantitative analysis of the differential self-interrogation Feynman-alpha method. Eur. Phys. J. Plus 127, 21 (2012). https://doi.org/10.1140/epjp/i2012-12021-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12021-3

Keywords

Navigation