The abundance of new kind of dark-matter structures

Regular Article

Abstract

A new kind of dark-matter structures, ultracompact minihalos (UCMHs) was proposed recently. They would be formed during the radiation-dominated epoch if large density perturbations are present. Moreover, if the dark matter is made up of weakly interacting massive particles, the UCMHs can have effect on cosmological evolution because of the high density and dark-matter annihilation within them. In this paper, one new parameter is introduced to consider the contributions of UCMHs due to the dark-matter annihilation to the evolution of cosmology, and we use the current and future CMB observations to obtain the constraint on the new parameter and then the abundance of UCMHs. The final results are applicable for a wider range of dark-matter parameters.

Keywords

Dark Matter Density Perturbation Annihilation Rate Cosmological Evolution Angular Diameter Distance 

References

  1. 1.
    A.M. Green, A.R. Liddle, Phys. Rev. D 56, 6166 (1997).CrossRefADSGoogle Scholar
  2. 2.
    M. Ricotti, A. Gould, Astrophys. J. 707, 979 (2009).CrossRefADSGoogle Scholar
  3. 3.
    C. Schmid, D.J. Schwarz, P. Widerin, Phys. Rev. Lett. 78, 791 (1997).CrossRefADSGoogle Scholar
  4. 4.
    G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267, 195 (1996).CrossRefADSGoogle Scholar
  5. 5.
    G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405, 279 (2005).CrossRefADSGoogle Scholar
  6. 6.
    L. Bergstrom, New J. Phys. 11, 106005 (2009).CrossRefGoogle Scholar
  7. 7.
    L. Zhang, X. Chen, Y.A. Lei, Z. Si, Phys. Rev. D 74, 103519 (2006).CrossRefADSGoogle Scholar
  8. 8.
    L. Bergstrom, P. Ullio, J. Buckley, Atropart. Phys. 9, 137 (1998).CrossRefADSGoogle Scholar
  9. 9.
    P. Ullio, L. Bergstrom, J. Edsjo, C. Lacey, Phys. Rev. D 66, 123502 (2002).CrossRefADSGoogle Scholar
  10. 10.
    E.A. Baltz et al., JCAP 07, 013 (2008).ADSGoogle Scholar
  11. 11.
    P. Scott, S. Sivertsson, Phys. Rev. Lett. 103, 211301 (2009).CrossRefADSGoogle Scholar
  12. 12.
    A.S. Josan, A.M. Green, Phys. Rev. D 82, 083527 (2010).CrossRefADSGoogle Scholar
  13. 13.
    Y. Yang, X. Huang, X. Chen, H. Zong, Phys. Rev. D 84, 043506 (2011).CrossRefADSGoogle Scholar
  14. 14.
    B.J. Carr, K. Kohri, Y. Sendouda, J. Yokoyama, Phys. Rev. D 81, 104019 (2010).CrossRefADSGoogle Scholar
  15. 15.
    B.C. Lacki, J.F. Beacom, Astrophys. J. Lett. 720, 67 (2010).CrossRefADSGoogle Scholar
  16. 16.
    G. Bertone, A.R. Zentner, J. Silk, Phys. Rev. D 72, 103517 (2005).CrossRefADSGoogle Scholar
  17. 17.
    X. Chen, M. Kamionkowski, Phys. Rev. D 70, 043502 (2004).CrossRefADSGoogle Scholar
  18. 18.
  19. 19.
  20. 20.
    D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011).CrossRefADSGoogle Scholar
  21. 21.
    D. Zhang, arXiv:1011.1935.
  22. 22.
    O. Adriani et al., Nature 70, 043502 (2004).Google Scholar
  23. 23.
    J. Chang et al., Nature 456, 362 (2008).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer 2011

Authors and Affiliations

  • Yupeng Yang
    • 1
    • 2
  • Xuelei Chen
    • 3
  • Tan Lu
    • 1
    • 2
    • 4
  • Hongshi Zong
    • 1
    • 2
  1. 1.Department of PhysicsNanjing UniversityNanjingChina
  2. 2.Joint Center for Particle, Nuclear Physics and CosmologyNanjingChina
  3. 3.National Astronomical ObservatoriesChinese Academy of SciencesBeijingChina
  4. 4.Purple Mountain ObservatoryChinese Academy of SciencesNanjingChina

Personalised recommendations