Selected issues of phase-field crystal simulations

Regular Article
Part of the following topical collections:
  1. Focus Point on Open Issues of Interface Computation at Complementary Time and Length Scales

Abstract

In this contribution our focus is on the phase-field crystal method, which can be viewed as the youngest methodology in the field of interface computation based on recent work by Elder et al. (Phys. Rev. Lett. 88, 245701 (2002)). It bridges the gap between the molecular simulation approaches and the phase-field approach by operating on diffusive time scales yet atomic length scales. Here we review the fundaments of the phase-field crystal method as well as different models established so far with the aim to capture the main features of the wide range of phase diagrams found in materials science more and more comprehensively.

Keywords

Crystal Nucleation Amorphous Precursor Direct Correlation Function Crystal Method Atomic Length Scale 

References

  1. 1.
    For a monograph see: H. Emmerich, The Diffuse Interface Approach in Material Science - Thermodynamic Concepts and Applications of Phase-Field Models, Lect. Notes Phys. Mon., Vol. 73 (Springer, Berlin, 2003).Google Scholar
  2. 2.
    L.Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002).CrossRefGoogle Scholar
  3. 3.
    W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Annu. Rev. Mater. Res. 32, 163 (2002).CrossRefGoogle Scholar
  4. 4.
    For a recent review summarizing the advances of and by phase-field modeling in condensed matter physics, see: H. Emmerich, Advances of and by phase-field modeling in condensed matter physics, Adv. Phys. 57, 1 (2008).Google Scholar
  5. 5.
    S.C. Gupta, The classical Stefan problem, Elsevier, North-Holland Series, Appl. Math. Mech., Vol. 45 (Elsevier, 2003).Google Scholar
  6. 6.
    G. Caginalp, P. Fife, Phys. Rev. B 33, 7792 (1986).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    C. Domb, M.S. Green, Phase Transitions and Critical Phenomena, Vol. 5 (Academic Press, London, 1976).Google Scholar
  8. 8.
    M. Fisher, Rev. Mod. Phys. 46, 597 (1974).ADSCrossRefGoogle Scholar
  9. 9.
    D. Jasnow, Rep. Prog. Phys. 47, 1061 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    Steinhardt et al., Phys. Rev. B 28, 784 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    Frenkel et al., J. Chem. Phys. 104, 9932 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    Bolhuis et al., Phys. Rev. Lett. 94, 235703 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    Meloni et al., Phys. Rev. B 83, 235303 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    J. Swift, P.C. Hohenberg, Phys. Rev. A 15, 851 (1993).Google Scholar
  15. 15.
    K.R. Elder, M. Katakowski, M. Haataja, M. Grant, Phys. Rev. Lett. 88, 245701 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    K.R. Elder, M. Grant, Phys. Rev. E 70, 051605 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    K.R. Elder, N. Provatas, J. Berry, P. Stefanovic, M. Grant, Phys. Rev. B. 75, 064107 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    P.M. Stefanovic, M. Haataja, N. Provatas, Phys. Rev. Lett. 96, 225504 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    J. Berry, M. Grant, K.R. Elder, Phys. Rev. E 73, 031609 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    K. Elder, Lecture Notes, Summer School of DFG Priority Program 1296 Heterogenous Nucleation, Herzogenrath, Germany, July 28th to August 1st (2008).Google Scholar
  21. 21.
    S. van Teeffelen, R. Backofen, A. Voigt, H. Löwen, Phys. Rev. E 79, 051404 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    S.A. Brazovskii, Zh. Eksp. Teor. Fiz. 68, 175 (1975).Google Scholar
  23. 23.
    R. Prieler, J. Hubert, D. Li, B. Verleye, R. Haberkern, H. Emmerich, J. Phys.: Condens. Matter 21, 464110 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    M.A. Choudhary, D. Li, H. Emmerich, H. Löwen, J. Phys.: Condens. Matter 23, 265005 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    R. Evans, Adv. Phys. 28, 143 (1979).ADSCrossRefGoogle Scholar
  26. 26.
    H. Löwen, Phys. Rep. 237, 249 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    H. Löwen, J. Phys.: Condens. Matter 14, 11897 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    Y. Singh, Phys. Rep. 207, 351 (1991).ADSCrossRefGoogle Scholar
  29. 29.
    By scaling, hard ellipsoids with fixed orientation are formally equivalent to hard-sphere systems. This is no longer true, of course, if the interactions are soft and involve an explicit energy scaleGoogle Scholar
  30. 30.
    A.M. Bohle, R. Holyst, T. Vilgis, Phys. Rev. Lett. 76, 1396 (1996).ADSCrossRefGoogle Scholar
  31. 31.
    H. Löwen, Phys. Rev. Lett. 72, 424 (1994).ADSCrossRefGoogle Scholar
  32. 32.
    H. Löwen, J. Chem. Phys. 100, 6738 (1994).ADSCrossRefGoogle Scholar
  33. 33.
    T. Kirchhoff, H. Löwen, R. Klein, Phys. Rev. E 53, 5011 (1996).ADSCrossRefGoogle Scholar
  34. 34.
    S. Prestipino, F. Saija, J. Chem. Phys. 126, 194902 (2007).ADSCrossRefGoogle Scholar
  35. 35.
    D. van der Beek, P. Davidson, H.H. Wensink, G.J. Vroege, H.N.W. Lekkerkerker, Phys. Rev. E 77, 031708 (2008).ADSCrossRefGoogle Scholar
  36. 36.
    V.N. Manoharan, M.T. Elsesser, D.J. Pine, Science 301, 483 (2003).ADSCrossRefGoogle Scholar
  37. 37.
    E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli, F. Sciortino, Phys. Rev. Lett. 97, 168301 (2006).ADSCrossRefGoogle Scholar
  38. 38.
    E. Allahyarov, H. Löwen, A.A. Louis, J.-P. Hansen, Europhys. Lett. 57, 731 (2002).ADSCrossRefGoogle Scholar
  39. 39.
    E. Allahyarov, H. Löwen, J.-P. Hansen, A.A. Louis, Phys. Rev. E 67, 051404 (2003).ADSCrossRefGoogle Scholar
  40. 40.
    M. Rex, H.H. Wensink, H. Löwen, Phys. Rev. E 76, 021403 (2007).ADSCrossRefGoogle Scholar
  41. 41.
    M.M. Tirado, C.L. Martinez, J.G. de la Torre, J. Chem. Phys. 81, 2047 (1984).ADSCrossRefGoogle Scholar
  42. 42.
    H. Löwen, Phys. Rev. E 50, 1232 (1994).ADSCrossRefGoogle Scholar
  43. 43.
    T.V. Ramakrishnan, M. Yussouff, Phys. Rev. B 19, 2775 (1979).ADSCrossRefGoogle Scholar
  44. 44.
    A. Jaatinen, C.V. Achim, K.R. Elder, T. Ala-Nissila, Phys. Rev. E 80, 031602 (2009).ADSCrossRefGoogle Scholar
  45. 45.
    A.D.J. Haymet, D.W. Oxtoby, J. Chem. Phys. 74, 2559 (1981).ADSCrossRefGoogle Scholar
  46. 46.
    B.B. Laird, J.D. McCoy, A.D.J. Haymet, J. Chem. Phys. 87, 5449 (1987).ADSCrossRefGoogle Scholar
  47. 47.
    P. Harrowell, D. Oxtoby, J. Chem. Phys. 80, 1639 (1984).ADSCrossRefGoogle Scholar
  48. 48.
    Y.C. Shen, D. Oxtoby, J. Chem. Phys. 105, 6517 (1996).ADSCrossRefGoogle Scholar
  49. 49.
    Y.C. Shen, D. Oxtoby, J. Chem. Phys. 104, 4233 (1996).ADSCrossRefGoogle Scholar
  50. 50.
    K.-A. Wu, A. Adland, A. Karma, Phys. Rev. E 81, 061601 (2010).ADSCrossRefGoogle Scholar
  51. 51.
    G.I. Tóth, G. Tegze, T. Pusztai, G. Tóth, L. Gránásy, J. Phys.: Condens. Matter 22, 364101 (2010).CrossRefGoogle Scholar
  52. 52.
    A. Jaatinen, T. Ala-Nissila, J. Phys.: Condens. Matter 22, 205402 (2010).ADSCrossRefGoogle Scholar
  53. 53.
    M. Greenwood, J. Rottler, N. Provatas, Phys. Rev. E. 83, 031601 (2011).ADSCrossRefGoogle Scholar
  54. 54.
    M. Plapp, Philos. Mag. 91, 25 (2011).ADSCrossRefGoogle Scholar
  55. 55.
    M. Haataja, L. Gránásy, H. Löwen, J. Phys.: Condens. Matter 22, 360301 (2010).CrossRefGoogle Scholar
  56. 56.
    U.M.B. Marconi, P. Tarazona, J. Chem. Phys. 110, 8032 (1999).ADSCrossRefGoogle Scholar
  57. 57.
    H. Löwen, J. Phys.: Condens. Matter 15, V1 (2003).ADSCrossRefGoogle Scholar
  58. 58.
    G.H. Fredrickson, K. Binder, J. Chem. Phys. 91, 7265 (1989).ADSCrossRefGoogle Scholar
  59. 59.
    N.A. Gross, M. Ignatiev, B. Chakraborty, Phys. Rev. E 62, 6116 (2000).ADSCrossRefGoogle Scholar
  60. 60.
    R. Backofen, A. Voigt, J. Phys.: Condens. Matter 22, 364104 (2010).CrossRefGoogle Scholar
  61. 61.
    J. Hubert, M. Cheng, H. Emmerich, J. Phys.: Condens. Matter 21, 464108 (2009).ADSCrossRefGoogle Scholar
  62. 62.
    J.F. Lutsko, G. Nicolis, Phys. Rev. Lett. 96, 046102 (2006).ADSCrossRefGoogle Scholar
  63. 63.
    H.J. Schöpe, G. Bryant, W. van Megen, Phys. Rev. Lett. 96, 175701 (2006).ADSCrossRefGoogle Scholar
  64. 64.
    T.H. Zhang, X.Y. Liu, J. Am. Chem. Soc. 129, 13520 (2007).CrossRefGoogle Scholar
  65. 65.
    T. Schilling, H.J. Schöpe, M. Oettel, Phys. Rev. Lett. 105, 025701 (2010).ADSCrossRefGoogle Scholar
  66. 66.
    L. Gránásy, G. Tegze, G.I. Tóth, T. Pusztai, Philos. Mag. 91, 123 (2011).ADSCrossRefGoogle Scholar
  67. 67.
    P. Dillmann, G. Maret, P. Keim, J. Phys.: Condens. Matter 20, 404216 (2008).CrossRefGoogle Scholar
  68. 68.
    M.I. Mendelev, J. Schmalian, C.Y. Wang, J.R. Morris, K.M. Ho, Phys. Rev. B 74, 104206 (2006).ADSCrossRefGoogle Scholar
  69. 69.
    M. Dzugutov, Phys. Rev. A 46, 2984 (1992).ADSCrossRefGoogle Scholar
  70. 70.
    C.V. Achim, M. Karttunen, K.R. Elder, E. Granato, T. Ala-Nissila, S.C. Ying, Phys. Rev. E. 74, 021104 (2006).ADSCrossRefGoogle Scholar
  71. 71.
    J.A.P. Ramos, E. Granato, C.V. Achim, S.C. Ying, K.R. Elder, T. Ala-Nissila, Phys. Rev. E 78, 031109 (2008).ADSCrossRefGoogle Scholar
  72. 72.
    G. Tegze, L. Gránásy, G.I. Tóth, J.F. Douglas, T. Pusztai, Soft Matter 7, 1789 (2011).ADSCrossRefGoogle Scholar
  73. 73.
    G. Tegze, G.I. Tóth, L. Gránásy, Phys. Rev. Lett. 106, 195502 (2011).ADSCrossRefGoogle Scholar
  74. 74.
    W.B. Rusell, P.M. Chaikin, J. Zhu, W.V. Meyer, R. Rogers, Langmuir 13, 3871 (1997).CrossRefGoogle Scholar
  75. 75.
    G. Tegze, G. Bansel, G.I. Tóth, T. Pusztai, Z. Fan, L. Gránásy, J. Comput. Phys. 228, 1612 (2009).ADSMATHCrossRefGoogle Scholar
  76. 76.
    T. Pusztai, G. Tegze, G.I. Tóth, L. Környei, G. Bansel, Y. Fan, L. Gránásy, J. Phys.: Condens. Matter 20, 404205 (2008).CrossRefGoogle Scholar
  77. 77.
    S. Muralidharan, M. Haataja, Phys., Rev. Lett. 105, 126101 (2010).ADSCrossRefGoogle Scholar
  78. 78.
    T. Hirouchi, T. Takaki, Y. Tomita, Comp. Mat. Sci. 44, 1192 (2009).CrossRefGoogle Scholar
  79. 79.
    P.F. Tupper, M. Grant, EPL 81, 40007 (2008).ADSCrossRefGoogle Scholar
  80. 80.
    S.K. Mkhonta, D. Vernon, K.R. Elder, M. Grant, arXiv:0806.3445v2
  81. 81.
    R. Wittkowski, H. Löwen, H.R. Brand, Phys. Rev. E 82, 031708 (2010).ADSCrossRefGoogle Scholar
  82. 82.
    H. Löwen, J. Phys.: Condens. Matter 22, 364105 (2010).CrossRefGoogle Scholar
  83. 83.
    H. Assadi, unpublishedGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer 2011

Authors and Affiliations

  1. 1.Materials and Process SimulationUniversity of BayreuthBayreuthGermany
  2. 2.Research Institute for Solid State Physics and OpticsBudapestHungary
  3. 3.BCASTBrunel UniversityUxbridge, MiddlesexUK
  4. 4.Institut für Theoretische Physik II: Weiche MaterieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations