FRW universe models in conformally flat-spacetime coordinates II: Universe models with negative and vanishing spatial curvature

  • Ø. Grøn
  • S. Johannesen
Regular Article


We deduce general expressions for the line element of universe models with negative and vanishing spatial curvature described by conformally flat-spacetime coordinates. The empty Milne universe model and models with dust, radiation and vacuum energy are exhibited. Discussing the existence of particle horizons we show that there is continual creation of space, matter and energy when conformal time is used in Friedmann-Robertson-Walker models with negative spatial curvature.


Vacuum Energy Conformal Space Cosmic Time Universe Model World Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    O. Grøn, S. Johannesen, Eur. Phys. J. Plus 126, 28 (2011)CrossRefGoogle Scholar
  2. 2.
    L. Infield, A. Schild, Phys. Rev. 68, 250 (1945)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    G.E. Tauber, J. Math. Phys. 8, 118 (1967)CrossRefADSGoogle Scholar
  4. 4.
    G. Endean, Astrophys. J. 479, 40 (1997)CrossRefADSGoogle Scholar
  5. 5.
    M. Ibison, J. Math. Phys. 48, 122501-1 (2007)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    M. Iihoshi, S.V. Ketov, A. Morishita, Prog. Theor. Phys. 118, 475 (2007)CrossRefMATHADSGoogle Scholar
  7. 7.
    K. Shankar, B.F. Whiting, Conformal coordinates for a constant density star, arXiv:0706.4324
  8. 8.
    J. Garecki, On Energy of the Friedmann Universes in Conformally Flat Coordinates, arXiv:0708.2783
  9. 9.
    G.U. Varieschi, Gen. Relativ. Gravit. 42, 929 (2010) arXiv:0809.4729 CrossRefMATHADSMathSciNetGoogle Scholar
  10. 10.
    M.J. Chodorowski, A direct consequence of the expansion of space? Astro-ph: 0610590Google Scholar
  11. 11.
    G.F. Lewis, M.J. Francis, L.A. Barnes, J.B. James, Mon. Not. R. Astron. Soc. 381, L50 (2007)CrossRefADSGoogle Scholar
  12. 12.
    V.F. Mukhanov, Physical foundations of cosmology (Cambridge University Press, Cambridge UK, 2005)Google Scholar
  13. 13.
    Ø. Grøn, S. Hervik, Einstein’s General Theory of Relativity (Springer, 2007) Chapt. 11Google Scholar
  14. 14.
    E. Eriksen, O. Grøn, Int. J. Mod. Phys. D 4, 115 (1995)CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer 2011

Authors and Affiliations

  1. 1.Faculty of EngineeringOslo University CollegeOsloNorway

Personalised recommendations