Advertisement

The rest-frame instant form and Dirac observables for the open Nambu string

  • D. Alba
  • H. W. Crater
  • L. Lusanna
Regular Article

Abstract.

The rest-frame instant form of the positive-energy part of the open Nambu string is developed. The string is described as a decoupled non-local canonical non-covariant Newton-Wigner center of mass plus a canonical basis of Wigner-covariant relative variables living in the Wigner 3-spaces. The center of mass carries a realization of the Poincaré algebra depending upon the invariant mass and the rest-spin of the string, functions of the relative variables. A canonical basis of gauge-invariant Dirac observables is built with Frenet-Serret geometrical methods. Some comments on canonical quantization are made.

Keywords

Invariant Mass Poisson Bracket Open String Isolate System Canonical Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Lusanna, Int. J. Mod. Phys. A 12, 645 (1997)CrossRefMATHADSMathSciNetGoogle Scholar
  2. 2.
    L. Lusanna, The Chrono-Geometrical Structure of Special and General Relativity: A Re-Visitation of Canonical Geometrodynamics, lectures at the 42nd Karpacz Winter School of Theoretical Physics: Current Mathematical Topics in Gravitation and Cosmology, Ladek, Poland, 6--11 February 2006Google Scholar
  3. 3.
    L. Lusanna, Int. J. Geom. Methods Mod. Phys. 4, 79 (2007) gr-qc/0604120CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    L. Lusanna, Towards Relativistic Atomic Physics and Post-Minkowskian Gravitational Waves, talk at the Workshop on Gravitational Waves Detection with Atom Interferometry, held in Firenze at the Galileo Galilei Institute for Theoretical Physics, February 23-24, 2009 arxiv:0908.0209Google Scholar
  5. 5.
    L. Lusanna, Post-Minkowskian Gravity: Dark Matter as a Relativistic Inertial Effect?, talk at the 1st Mediterranean Conference in Classical and Quantum Gravity, held in the Orthodox Academy of Crete in Kolymbari (Greece) from Monday, September 14th to Friday, September 18th, 2009 arxiv:0912.2935Google Scholar
  6. 6.
    D. Alba, L. Lusanna, Int. J. Geom. Methods Mod. Phys. 7, 33 (2010) arxiv:0908.0213CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    D. Alba, L. Lusanna, Int. J. Geom. Methods Mod. Phys. 7, 185 (2010) arxiv:0908.0215CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    P.A.M. Dirac, Can. J. Math. 2, 129 (1950) “Lectures on Quantum Mechanics”, Belfer Graduate School of Science, Monographs Series (Yeshiva University, New York, N.Y., 1964)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    J.L. Anderson, P.G. Bergmann, Phys. Rev. 83, 1018 (1951)CrossRefMATHADSMathSciNetGoogle Scholar
  10. 10.
    P.G. Bergmann, J. Goldberg, Phys. Rev. 98, 531 (1955)CrossRefMATHADSMathSciNetGoogle Scholar
  11. 11.
    D. Alba, H.W. Crater, L. Lusanna, Can. J. Phys. 88, 379 (2010) arxiv:0806.2383CrossRefADSGoogle Scholar
  12. 12.
    D. Alba, H.W. Crater, L. Lusanna, Can. J. Phys. 88, 425 (2010) arxiv:0811.0715CrossRefADSGoogle Scholar
  13. 13.
    D. Alba, H.W. Crater, L. Lusanna, J. Phys. A 40, 9585 (2007) gr-qc/0610200CrossRefMATHADSMathSciNetGoogle Scholar
  14. 14.
    H. Crater, L. Lusanna, Ann. Phys. (N.Y.) 289, 87 (2001) hep-th/0001046CrossRefMATHADSMathSciNetGoogle Scholar
  15. 15.
    D. Alba, H. Crater, L. Lusanna, Int. J. Mod. Phys. A 16, 3365 (2001) hep-th/0103109CrossRefMATHADSMathSciNetGoogle Scholar
  16. 16.
    Y. Nambu, Quark Model and the Factorization of Veneziano Amplitude, in Proceedings of the International Conference on Symmetries and Quark Models, Wayne State University, 1969 (Gordon and Breach, NewYork, 1970)Google Scholar
  17. 17.
    T. Goto, Prog. Theor. Phys. 46, 1560 (1971)CrossRefMATHADSMathSciNetGoogle Scholar
  18. 18.
    J. Scherk, Rev. Mod. Phys. 47, 123 (1975)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    J.H. Schwarz, Phys. Rep. 89, 223 (1982)CrossRefMATHADSMathSciNetGoogle Scholar
  20. 20.
    F. Colomo, G. Longhi, L. Lusanna, Mod. Phys. Lett. A 5, 17 (1990)CrossRefMATHADSMathSciNetGoogle Scholar
  21. 21.
    H. Leutwyler, J. Stern, Ann. Phys. (N.Y.) 112, 94 (1978)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    F. Colomo, G. Longhi, L. Lusanna, Int. J. Mod. Phys. A 5, 3347 (1990)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    F. Colomo, L. Lusanna, Int. J. Mod. Phys. A 7, 1705 (1992)CrossRefMATHADSMathSciNetGoogle Scholar
  24. 24.
    F. Colomo, L. Lusanna, Int. J. Mod. Phys. A 7, 4107 (1992)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    D.C. Salisbury, K. Sundermeyer, Nucl. Phys. B 191, 250 (1981)CrossRefADSGoogle Scholar
  26. 26.
    D.G. Boulware, E.T. Newman, Phys. Lett. B 174, 378 (1986)CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    X. Artru, Phys. Rev. 97, 147 (1983)Google Scholar
  28. 28.
    E. Del Giudice, P. Di Vecchia, S. Fubini, Ann. Phys. (N.Y.) 70, 378 (1972)CrossRefADSGoogle Scholar
  29. 29.
    S. Fubini, D. Gordon, G. Veneziano, Phys. Lett. B 29, 679 (1969)CrossRefADSGoogle Scholar
  30. 30.
    B.M. Barbashov, V.V. Nesterenko, Sov. J. Part. Phys. 9, 391 (1978)MathSciNetGoogle Scholar
  31. 31.
    A.J. Hanson, T. Regge, C. Teitelboim, Constrained Hamiltonian Systems, in Contributi del Centro Linceo Interdisciplinare di Scienze Matematiche, Fisiche e loro Applicazioni, n. 22 (Accademia Nazionale dei Lincei, Roma, 1975)Google Scholar
  32. 32.
    A. Patrascioiu, Lett. Nuovo Cimento 10, 676 (1974)CrossRefGoogle Scholar
  33. 33.
    A. Patrascioiu, Nucl. Phys. B 81, 525 (1974)CrossRefADSGoogle Scholar
  34. 34.
    R. Benguria, P. Cordero, C. Teitelboim, Nucl. Phys. B 122, 61 (1977)CrossRefADSGoogle Scholar
  35. 35.
    P.J. Steinhardt, Ann. Phys. (N.Y.) 128, 425 (1980)CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    M. Spivak, A Comprehensive Introduction in Differential Geometry, Vol. IV, second edition (Publish or Perish Inc., Houston, 1979)Google Scholar
  37. 37.
    L. Lusanna, Dirac’s Observable: From Particles to String and Fields, in Proceedings of the International Symposium on Extended Objects and Bound Systems, Karuizawa, Japan, March 19--21, 1992, edited by O. Hara, S. Ishida, S. Naka (World Scientific, Singapore, 1993)Google Scholar
  38. 38.
    G.P. Pron’ko, Rev. Math. Phys. 2, 355 (1991) and references thereinCrossRefMathSciNetGoogle Scholar
  39. 39.
    K. Pohlmeyer, Phys. Lett. B 119, 100 (1982)CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    K. Pohlmeyer, Commun. Math. Phys. 114, 351 (1988)CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    K. Pohlmeyer, Ann. Phys. Leipzig 8, 19 (1999)CrossRefMATHADSMathSciNetGoogle Scholar
  42. 42.
    K. Pohlmeyer, K.H. Rehren, Commun. Math. Phys. 105, 593 (1986)CrossRefMATHADSMathSciNetGoogle Scholar
  43. 43.
    K. Pohlmeyer, K.H. Rehren, Commun. Math. Phys. 114, 55 (1988)CrossRefMATHADSMathSciNetGoogle Scholar
  44. 44.
    K. Pohlmeyer, K.H. Rehren, Commun. Math. Phys. 114, 177 (1988)CrossRefADSMathSciNetGoogle Scholar
  45. 45.
    K. Pohlmeyer, M. Trunk, Int. J. Mod. Phys. A 19, 115 (2004) hep-th/0206061CrossRefMATHADSMathSciNetGoogle Scholar
  46. 46.
    C. Meusburger, K.H. Rehren, Commun. Math. Phys. 237, 69 (2003) math-ph/0202041MATHADSMathSciNetGoogle Scholar
  47. 47.
    G. Handrich, Int. J. Mod. Phys. A 17, 2331 (2002)CrossRefMATHADSMathSciNetGoogle Scholar
  48. 48.
    T. Thiemann, Class. Quantum Grav. 23, 1923 (2006) hep-th/0401172CrossRefMATHADSMathSciNetGoogle Scholar
  49. 49.
    D. Bahns, J. Math. Phys. 45, 4640 (2004) hep-th/0403108CrossRefMATHADSMathSciNetGoogle Scholar
  50. 50.
    R. Lynch, Phys. Rep. 256, 367 (1995)CrossRefADSMathSciNetGoogle Scholar
  51. 51.
    W.P. Schleich, S.M. Barnett (editors), Quantum Phase and Phase Dependent Measurements, Phys. Scr. T48, 3 (1993)Google Scholar
  52. 52.
    D. Alba, H.W. Crater, L. Lusanna, Relativistic Quantum Mechanics and Relativistic Entanglement in the Rest-Frame Instant Form of Dynamics arXiv:0907.1816

Copyright information

© Società Italiana di Fisica and Springer 2011

Authors and Affiliations

  • D. Alba
    • 1
  • H. W. Crater
    • 2
  • L. Lusanna
    • 3
  1. 1.Dipartimento di FisicaUniversità di Firenze, Polo ScientificoSesto FiorentinoItaly
  2. 2.The University of Tennessee Space InstituteTullahomaUSA
  3. 3.Sezione INFN di FirenzePolo ScientificoSesto Fiorentino (FI)Italy

Personalised recommendations