A physical explanation to the controversial Urbach tailing universality

Regular Article

Abstract.

Doping-related behavior divergence of some crystalline materials has raised doubts about Urbach tailing universality. In this paper, we infer the atomic scale interpretation of this divergence on the basis of experimental records and comparative studies. We focus on a widely known würtzite structured crystal and find that Urbach tailing was inhibited once doping charged loci succeeded to establish local coordinated donors networks or so-called topological filaments. The case of doping-free and saturated ZnO networks unexpected Urbach tailing features has been discussed. All the observed behaviors confirm the Urbach tailing universality despite their controversial aspect.

Keywords

Ytterbium Doping Element Urbach Energy Urbach Tail Doping Rate 

References

  1. 1.
    F. Urbach, Phys. Rev. 92, 1324 (1953)ADSCrossRefGoogle Scholar
  2. 2.
    N.F. Mott, Nobel Prize Lecture (1977)Google Scholar
  3. 3.
    N.F. Mott, Conduction in non-crystalline materials, $2{\ab{nd}}$ ed (Calrendon Press, Oxford, 1993)Google Scholar
  4. 4.
    N.F. Mott, Metal-insulator transitions (Taylor&Francis, London, 1974)Google Scholar
  5. 5.
    W. Martienssen, J. Phys. Chem. Solids 2, 257 (1957)ADSCrossRefGoogle Scholar
  6. 6.
    N.F. Mott, E.A. Davis, Electronics Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979)Google Scholar
  7. 7.
    C.C.F. John, J.B. Frank, J. Electrochem. Soc.: Solid-State. Sci. Technol. 122, 1719 (1975)Google Scholar
  8. 8.
    H. Demiryont, K.E. Nieternig, Sol. Energy Mater. 19, 79 (1989)CrossRefGoogle Scholar
  9. 9.
    Biljana Pejova, Mater. Chem. Phys. 119, 367 (2010)CrossRefGoogle Scholar
  10. 10.
    S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, J. Alloy Compd. 448, 21 (2008)CrossRefGoogle Scholar
  11. 11.
    Y. Pan, F. Inam, M. Zhang, D.A. Drabold, Phys. Rev. Lett. 100, 206403 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    T. Ratana, P. Amornpitoksuk, T. Ratana, S. Suwanboon, J. Alloy Compd. 470, 408 (2009)CrossRefGoogle Scholar
  13. 13.
    F. Yakuphanoglu, Y. Caglar, S. Ilican, M. Caglar, Physica B 394, 86 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    P.P. Sahay, R.K. Nath, Sens. Actuators B 134, 654 (2008)CrossRefGoogle Scholar
  15. 15.
    Q. Li, D. Zhu, W. Liu, Y. Liu, X. Ma, Appl. Surf. Sci. 254, 2922 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    A. Tiburcio-Silver, J.C. Joubert, M. Labeau, J. Phys. III 2, 1287 (1992)Google Scholar
  17. 17.
    Sreetama Dutta, S. Chattopadhyay, A. Sarkar, Mahuya Chakrabarti, D. Sanyal, D. Jana, Prog. Mater. Sci. 54, 89 (2009)CrossRefGoogle Scholar
  18. 18.
    W. Sritrakool, V. Sayakanit, H.R. Glyde, Phys. Rev. B 33, 1199 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    S. John, C. Soukoulis, M.H. Cohen, E. Economou, Phys. Rev. Lett. 57, 1777 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    S.M. Wasim, C. Rincon, G. Marin, P. Bocaranda, E. Hernandez, I. Bonalde, E. Medina, Phys. Rev. B 64, 195101 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    M. Niehus, P. Sanguino, R. Schwarz, A. Fedorov, J.M.G. Martinho, M.J. Soares, T. Monteiro, F. Wünsch, M. Kunst, J. Non-Cryst. Solids 338, 460 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    M. Niehus, R. Schwarz, S. Koynov, M. Heuken, D. Meister, B.K. Meyer, C. Main, S. Reynolds, Mater. Sci. Eng. B 82, 206 (2001)CrossRefGoogle Scholar
  23. 23.
    P.A. Fedders, D.A. Drabold, S. Nakhmanson, Phys. Rev. 58, 15624.92 (1998)Google Scholar
  24. 24.
    H.C. Kang, J. Non-Cryst. Solids 261, 169 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    R. Atta-Fynn, P. Biswas, D.A. Drabold, Phys. Rev. B 69, 245204 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    T.A. Abtew, M Zhang, D.A. Drabold, Phys. Rev. B 76, 045212 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    J.C. Phillips, Phys. Rev. B 75, 214503 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    A. Boukhachem, S. Fridjine, A. Amlouk, K. Boubaker, M. Bouhafs, M. Amlouk, J. Alloy Compd. 501, 339 (2010)CrossRefGoogle Scholar
  29. 29.
    K.B. BenMahmoud, M. Amlouk, Mater. Lett. 63, 991 (2009)CrossRefGoogle Scholar
  30. 30.
    C. Khelia, M. Amlouk, K. Boubaker, Fizika A (Zagreb) 18, 2,81 (2009)Google Scholar
  31. 31.
    A. Amlouk, K. Boubaker, M. Amlouk, J. Alloy Compd. 482, 164 (2009)CrossRefGoogle Scholar
  32. 32.
    S. Dabbous, T. Ben Nasrallah, J. Ouerfelli, K. Boubaker, M. Amlouk, S. Belgacem, J. Alloy Compd. 487, 286 (2009)CrossRefGoogle Scholar
  33. 33.
    A. Amlouk, K. Boubaker, M. Amlouk, M. Bouhafs, J. Alloy Compd. 485, 887 (2009)CrossRefGoogle Scholar
  34. 34.
    R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge UK, 2002)Google Scholar
  35. 35.
    R.W. Kelsall, I.W. Hamley, M. Geoghegan (Editors), Nanoscale Science and Technology (John Wiley & Sons Ltd, Chichester, 2005)Google Scholar
  36. 36.
    Y. Chen, X.L. Xu, G.H. Zhang, H. Xue, S.Y. Ma, Physica B 404, 3645 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    A. Amlouk, K. Boubaker, M. Bouhafs, M. Amlouk, to be published in J. Alloy Compd., DOI:10.1016/j.jallcom.2010.12.154Google Scholar

Copyright information

© Società Italiana di Fisica and Springer 2011

Authors and Affiliations

  1. 1.Unité de physique des dispositifs à semi-conducteurs, Faculté des sciences de TunisUniversité de Tunis El ManarMahdiaTunisia

Personalised recommendations