Tales from the prehistory of Quantum Gravity

Léon Rosenfeld’s earliest contributions
Article

Abstract

The main purpose of this paper is to analyse the earliest work of Léon Rosenfeld, one of the pioneers in the search of Quantum Gravity, the supposed theory unifying quantum theory and general relativity. We describe how and why Rosenfeld tried to face this problem in 1927, analysing the role of his mentors: Oskar Klein, Louis de Broglie and Théophile De Donder. Rosenfeld asked himself how quantum mechanics should concretely modify general relativity. In the context of a five-dimensional theory, Rosenfeld tried to construct a unifying framework for the gravitational and electromagnetic interaction and wave mechanics. Using a sort of “general relativistic quantum mechanics” Rosenfeld introduced a wave equation on a curved background. He investigated the metric created by what he called ‘quantum phenomena’, represented by wave functions. Rosenfeld integrated Einstein equations in the weak field limit, with wave functions as source of the gravitational field. The author performed a sort of semi-classical approximation obtaining at the first order the Reissner-Nordström metric. We analyse how Rosenfeld’s work is part of the history of Quantum Mechanics, because in his investigation Rosenfeld was guided by Bohr’s correspondence principle. Finally we briefly discuss how his contribution is connected with the task of finding out which metric can be generated by a quantum field, a problem that quantum field theory on curved backgrounds will start to address 35 years later.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashtekar, Abhay and Robert Geroch. 1974. Quantum theory of gravitation, Reports on Progress in Physics, 37: 1211–56. ADSCrossRefGoogle Scholar
  2. 2.
    Bacciagaluppi, Guido and Antony Valentini. 2009. Quantum Theory at the Crossroads. Reconsidering the 1927 Solvay Conference. Cambridge: Cambridge University Press. Google Scholar
  3. 3.
    Bahrami, Mohammad, André Grossardt, Sandro Donadi and Angelo Bassi. 2014. The Schrödinger-Newton equation and its foundations, New Journal of Physics, 16: 115007. ADSCrossRefGoogle Scholar
  4. 4.
    Berestetskii, Valdimir, Evgenij M. Lifšhitz and Lev Pitaevskii. 1971. Relativistic Quantum Theory. Oxford: Pergamon Press. Google Scholar
  5. 5.
    Birrel, Nicholas D. and Paul C. W. Davies. 1982. Quantum fields in Curved Space. Cambridge: Cambridge University Press. Google Scholar
  6. 6.
    Blum, Alexander, Martin Jähnert, Christoph Lehner and Jürgen Renn. 2017. Translation as heuristics: Heisenber’s turn to matrix mechanics, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 60: 3–22. ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bronstein, Matvei P. 1935. Quantentheorie schwacher Gravitationsfelder. Physikalische Zeitschrift der Sowjetunion, 9: 140–157 (1936). MATHGoogle Scholar
  8. 8.
    Carlip, Steven. 2008. Is Quantum Gravity necessary? Classical and Quantum Gravity, 25: 154010. ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chadwick, James. 1932. Possible existence of a neutron. Nature, 129: 312 1932. CrossRefGoogle Scholar
  10. 10.
    Darrigol, Olivier. 1992. From c-Numbers to q-Numbers: The Classical Analogy in the History of Quantum Theory. Berkeley: University of California Press. Google Scholar
  11. 11.
    de Broglie, Louis. 1927a. La mécanique ondulatoire et la structure atomique de la matière et du rayonnement. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 185: 380–382. MATHGoogle Scholar
  12. 12.
    de Broglie, Louis. 1927b. L’univers à cinq dimensions et la mécanique ondulatoire. Le Journal de Physique et le Radium, Tome VIII: 65–73. Série VI. CrossRefMATHGoogle Scholar
  13. 13.
    De Donder, Theophile. 1926a. Application de la relativité aux le systèmes atomiques et moléculaires. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 182: 1380–1382. MATHGoogle Scholar
  14. 14.
    De Donder, Theophile. 1926b. Application de la quantification déduite de la Gravifique einsteinienne. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 183: 594–595 MATHGoogle Scholar
  15. 15.
    De Donder,Theophile. 1927a. The Mathematical Theory of Relativity. Cambridge, MA: MIT. Google Scholar
  16. 16.
    De Donder, Théophile. 1927b. Le Principe de Correspondance déduit de la Gravifique et la Mécanique ondulatoire. (Quatrième communication). Bulletin de l’Académie royale de Belgique [Classe des Sciences], 13: 504–509. Serie 5. MATHGoogle Scholar
  17. 17.
    De Donder, Théophile. 1930. Einsteinian gravity. Annales de l’Institut Henri Poincaré, 1: 77–116. Google Scholar
  18. 18.
    De Donder Théophile. 1930. Théorie invariantive du calcul des variations. Paris: Gauthier-Villars. Google Scholar
  19. 19.
    De Donder, Theophile and Frans H. van den Dungen. 1926. La quantification déduite de la Gravifique einsteinienne. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 183: 22–24. MATHGoogle Scholar
  20. 20.
    Dirac, Paul A. M. 1928. The Quantum Theory of the Electron. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 117: 610–624. ADSCrossRefMATHGoogle Scholar
  21. 21.
    Duff, Michael J. 1973. Quantum Tree Graphs and the Schwarzschild Solution. Physical Review D, 7: 2317–2326. ADSCrossRefGoogle Scholar
  22. 22.
    Duff, Michael J., B.E.W. Nilsson and C.E. Pope. 1986. Kaluza-Klein Supergravity. Physics Reports, 130: 1–142. ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Eddington, Arthur S. 1923. The Mathematical Theory of Relativity. Cambridge: Cambridge University Press. Google Scholar
  24. 24.
    Einstein, Albert. 1916. Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preussische Akademieder Wissenschaften, part 1: pp. 688–696. Google Scholar
  25. 25.
    Giulini, Domenico and André Grossardt. 2012. The Schrödinger–Newton equation as a non-relativistic limit of self-gravitating Klein–Gordon and Dirac fields. Classical and Quantum Gravity, 29: 215010. ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Gordon, Walter. 1927. Der Comptoneffekt nach der Schrd¨ingerschen Theorie. Zeitschrift für Physik, 40: 117–133. ADSCrossRefGoogle Scholar
  27. 27.
    Gorelik, Gennady E. and Viktor Frenkel. 1994. Matvei Petrovich Bronstein and Sovjet Theoretical Physics in the Thirties. Basel: Birkhäuser. Google Scholar
  28. 28.
    Hagar, Amit. 2014. Discrete or Continuous? The Quest for Fundamental Length in Modern Physics. Cambridge: Cambridge University Press. Google Scholar
  29. 29.
    Hawking, Stephen W. 1975. Particle Creation by Black Holes. Communications in Mathematical Physics, 43: 199–220. ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Heisenberg, Werner. 1927. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschrift für Physik, 43: 172–198. ADSCrossRefMATHGoogle Scholar
  31. 31.
    Hilbert, David. 1900. Mathematische Probleme – Vortrag, gehalten auf dem internationalen Mathematiker-Kongreß zu Paris 1900. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 3: 253–297. MATHGoogle Scholar
  32. 32.
    Jacobsen, Anja S. 2012. Léon Rosenfeld. Physics, Philosophy, and Politics in the Twentieth Century. Singapore: World Scientific. Google Scholar
  33. 33.
    Jaffé, George. 1922. Bemerkungen über die relativistischen Keplerellipsen. Annalen der Physik, 372: 212. ADSCrossRefMATHGoogle Scholar
  34. 34.
    Jeffery, George B. 1921. The Field of an Electron on Einstein’s Theory of Gravitation. Proceedings of the Royal Society of London A, 99: 123–134. ADSCrossRefGoogle Scholar
  35. 35.
    Jordan, Pascual. 1947. Erweiterung der projektiven Relativitätstheorie. Annalen der Physik, 1: 219–228. ADSCrossRefGoogle Scholar
  36. 36.
    Jordan, Pascual and Oslar Klein. 1927. Zum Mehrkörperproblem der Quantentheorie. Zeitschrift für Physik, 45: 751–765. ADSCrossRefMATHGoogle Scholar
  37. 37.
    Kaluza, Theodore. 1921. Zum Unitätsproblem in der Physik. Sitzungsberichte der KoniglichAkademieder Preussischen Akademie der Wissenschaften, 1: 966–972. MATHGoogle Scholar
  38. 38.
    Kaluza, Theodor. 1984. On the Unification Problem in Physics. In: Lee, H. C., editor, An Introduction to Kaluza-Klein Theories – Workshop on Kaluza-Klein Theories, p. 1. Chalk River, Ontario, Canada: World Scientific. Translated by Taizo Muta. Google Scholar
  39. 39.
    Kanatchikov, Igor V. 1998. From the De Donder-Weyl Hamiltonian Formalism to Quantization of Gravity. In: Rainer, Martin and Schmidt, Hans-Jurgen, editors, Current topics in mathematical cosmology. Proceedings, International Seminar, ISMC’98, Potsdam, Germany, March 30–April 4, 1998: 457–467. Singapore: World Scientific. Google Scholar
  40. 40.
    Kanatchikov, Igor V. 2014. On precanonical quantization of gravity. Nonlinear Phenomena in Complex Systems, 17: 372–376. MathSciNetMATHGoogle Scholar
  41. 41.
    Kiefer, Claus. 2004. Quantum Gravity. Oxford: Claredon Press. Google Scholar
  42. 42.
    Klein, Oskar. 1926a. Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik, 37: 895–906. ADSCrossRefMATHGoogle Scholar
  43. 43.
    Klein, Oskar. 1926b. The atomicity of electricity as a quantum theory law. Nature, 118: 516. ADSCrossRefGoogle Scholar
  44. 44.
    Klein, Oskar. 1927a. Sur l’article de M. L. de Broglie: L’univers à cinq dimensions et la mécanique ondulatoire. Le Journal de Physique et le Radium, Tome VIII: 242–243. Série VI. CrossRefMATHGoogle Scholar
  45. 45.
    Klein, Oskar. 1927b. Zur fünfdimensionalen Darstellung der Relativitätstheorie. Zeitschrift für Physik, 46: 188–208. ADSCrossRefMATHGoogle Scholar
  46. 46.
    Klein, Oskar. 1927c. Elektrodynamik und Wellenmechanik vom Standpunkt des Korrespondenzprinzip, Zeitschrift für Physik, 41: 407–442. ADSCrossRefMATHGoogle Scholar
  47. 47.
    Klein, Oskar. 1984. “Quantum Theory and five-dimensional Relativity” by Oskar Klein. In: Lee, H. C., editor, An Introduction to Kaluza-Klein Theories – Workshop on Kaluza-Klein Theories: 10–21. Chalk River, Ontario, Canada: World Scientific. Traduzione a cura di Taizo Muta. Google Scholar
  48. 48.
    Klein, Oskar. 1991. From my Life of Physics. In: The Oskar Klein Memorial Lectures. Vol. 1: Lectures by C. N. Yang and S. Weinberg with translated reprints by O. Klein. Editor: Gösta Ekspong. Singapore: World Scientific Publishing Co. Pte. Ltd. Google Scholar
  49. 49.
    Kramers, Hendrik A. 1922. On the application of Einstein’s theory of gravitation to a stationary field of gravitation, Proceedings Koninklijke Akademie van Wetenschappen, 23: 1052–1073. ADSGoogle Scholar
  50. 50.
    Kuhn, Thomas S. and John L. Heilbron. 1963. Interview with Dr. Leon Rosenfeld by Thomas S. Kuhn and John L. Heilbron At Carlsberg. July 1, 1963. College Park, MD USA: Niels Bohr Library & Archives, American Institute of Physics. Session I. Google Scholar
  51. 51.
    Landau, Lev D. and Evgenij M. Lifšhitz. 1951. The Classical Theory of Fields. Cambridge: Addison-Wesley. Google Scholar
  52. 52.
    Lodge, Oliver. 1921. The Gravitational Field of an Electron. Nature, 107: 392. ADSCrossRefGoogle Scholar
  53. 53.
    Mehra, Jagdish and Helmut Rechenberg. 2001. The Historical Development of Quantum Theory 1–6. New York: Springer-Verlag. Google Scholar
  54. 54.
    Mehra, Jagdish and Helmut Rechenberg. 2001. The Probability Interpretation and the Statistical Transformation Theory, the Physical Interpretation, and the Empirical and Mathematical Foundations of Quantum Mechanics 1926–1932. The Historical Development of Quantum Theory, Vol. 6, The Completion of Quantum Mechanics 1926–1941, Part I. New York: Springer-Verlag. Google Scholar
  55. 55.
    Misner, Charles W., Kip S. Thorne and John A. Wheeler. 1973. Gravitation. San Francisco: W.H. Freeman and Company. Google Scholar
  56. 56.
    M∅ller, Christian. 1962. The energy-momentum complex in general relativity and related problems. In Les théories relativistes de la gravitation. (ed. A. Lichnerowicz and M. A. Tonnelat), Paris: Editions du Centre National de la Recherche Scientifique. Google Scholar
  57. 57.
    Nordström, Gunnar. 1914. Über die Möglichkeit, das elektromagnetische Feld und das Gravitationsfeld zu Vereinigen. Physlische Zeitschrift, 15: 504–506. MATHGoogle Scholar
  58. 58.
    O’Raifeartaigh, Lochlain and Norbert Straumann. 2000. Gauge theory: Historical origins and some modern developments. Reviews of Modern Physics, 72: 1–23. ADSMathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Overduin, James M. and Paul S. Wesson. 1997. Kaluza-Klein Gravity. Physics Reports, 283: 303–380. ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Pais, Abraham. 1982. “Subtle is the Lord ...”. The Science and Life of Albert Einstein. Oxford: Oxford University Press. Google Scholar
  61. 61.
    Pais, Abraham. 2000. The Genius of Science: A Portrait Gallery. Oxford: Oxford University Press. Google Scholar
  62. 62.
    Pauli, Wolfgang. 1927. Zur Quantenmechanik des magnetischen Elektrons. Zeitschrift für Physik, 43: 601–623. ADSCrossRefMATHGoogle Scholar
  63. 63.
    Pauli, Wolfgang. 1993. Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. Band III: 1940–1949/Scientific Correspondence with Bohr, Einstein, Heisenberg a.o. Volume III: 1940–1949. Edited by Karl von Meyenn. Berlin, Heidelberg: Springer-Verlag. Google Scholar
  64. 64.
    Penrose, Roger. 1996. On gravity’s role in quantum state reduction. General Relativity and Gravitation, 28: 581–600. ADSMathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Rickles, Dean. 2005. “Pioneers of Quantum Gravity”. Talk presented at the Third Conference on History of Quantum Physics (HQ3). Google Scholar
  66. 66.
    Rickles, Dean. 2013. “Pourparlers for Amalgamation: Some Early Sources of Quantum Gravity Research”. In: Shaul Katzir, Christoph Lehner and Renn Jürgen, editors, Traditions and Transformations in the History of Quantum Physics, Chapter 6. Max Planck Research Library for the History and Development of Knoledge. Proceedings 5. Third International Conference on the History of Quantum Physics, Berlin, June 28–July 2, 2010; http://www.edition-open-access.de/proceedings/5/index.html. Google Scholar
  67. 67.
    Robertson, Baldwin. 1972. Introduction to field operators in quantum mechanics. American Journal of Physics, 41 :678–690. ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    Rocci, Alessio. 2013. On first attempts to reconcile quantum principles with gravity. Journal of Physics: Conference Series, 470: 12004. Google Scholar
  69. 69.
    Rocci, Alessio. 2015a. Oliver in Quantum-Gravity-land. http://www.oliverlodge.org/oliver-in-quantum-gravity-land/. Based on talk given at 3rd Making Waves Workshop. October, 31 Liverpool. Google Scholar
  70. 70.
    Rocci, Alessio. 2015b. History of Quantum Gravity: from the birth of General Relativity to the end of WWII 1915–1945. http://paduaresearch.cab.unipd.it/8916, Language: Italian. Google Scholar
  71. 71.
    Rosenfeld, Léon. 1927a. L’Univers à cinq dimensions et la Mécanique ondulatoire. Bulletin de l’Académie royale de Belgique [Classe des Sciences], 13: 304–325. Serie 5. MATHGoogle Scholar
  72. 72.
    Rosenfeld, Léon. 1927b. L’Univers à cinq dimensions et la Mécanique ondulatoire. (Deuxième communication). Bulletin de l’Académie royale de Belgique [Classe des Sciences], 13: 447–458. Serie 5. Google Scholar
  73. 73.
    Rosenfeld, Léon. 1927c. L’Univers à cinq dimensions et la Mécanique ondulatoire. (Troisième communication). Bulletin de l’Académie royale de Belgique [Classe des Sciences], 13: 573–579. Serie 5. Google Scholar
  74. 74.
    Rosenfeld, Léon. 1927d. L’électron magnétique et la mécanique ondulatoire. Comptes rendus hebdomadaires des séances de l’Académie des sciences, T184: 1540–1541. MATHGoogle Scholar
  75. 75.
    Rosenfeld, Léon. 1927e. L’Univers à cinq dimensions et la Mécanique ondulatoire. (Quatrième communication). Bulletin de l’Académie royale de Belgique [Classe des Sciences], 13: 661–682. Serie 5. Google Scholar
  76. 76.
    Rosenfeld, Léon. 1930a. Über die Gravitationswirkungen des Lichtes. Zeitschrift für Physik, 65: 589–599. ADSCrossRefMATHGoogle Scholar
  77. 77.
    Rosenfeld, Léon. 1930b. Zur Quantelung der Wellenfelder. Annalen der Physik, 5: 113–152. ADSCrossRefMATHGoogle Scholar
  78. 78.
    Rosenfeld, Léon. 1963. On quantization of fields. Nuclear Physics, 40: 353–356. ADSMathSciNetCrossRefMATHGoogle Scholar
  79. 79.
    Rosenfeld, Léon. 2017. On the quantization of wave fields. European Physical Journal H, 42: 63–94. ADSCrossRefGoogle Scholar
  80. 80.
    Salisbury, Donald and Kurt Sundermeyer. 2017. Léon Rosenfeld’s general theory of constrained Hamiltonian dynamics. European Physical Journal H, 42: 23–61. ADSCrossRefGoogle Scholar
  81. 81.
    Schrödinger, Erwin. 1926. Quantisierung als Eigenwertproblem. (Erste Mitteilung). Annalen der Physik, 79: 361–376. CrossRefMATHGoogle Scholar
  82. 82.
    Schrödinger, Erwin. 1927. Der Energieimpulssatz der Materiewellen. Annalen der Physik, 82: 265–272. CrossRefMATHGoogle Scholar
  83. 83.
    Solomon, Jacques. 1938. Gravitation et quanta. Journal de Physique et le Radium, 9: 479–485. CrossRefMATHGoogle Scholar
  84. 84.
    Stachel, John. 1999. Introduction. In: Tian Yu Cao, editor, Conceptual foundations of quantum field theory, Chapter V, Quantum field theory and space-time. Cambridge: Cambridge University Press. pp. 166–175. Google Scholar
  85. 85.
    Rickles, Dean, and Steven Weinstein. 2016. “Quantum Gravity”, The Stanford Encyclopedia of Philosophy (Winter 2016 Edition), Edward N. Zalta (ed.), https://plato.stanford.edu/archives/win2016/entries/quantum-gravity/. Google Scholar
  86. 86.
    Thiry, Yves. 1948. Les équations de la théorie unitaire de Kaluza. Comptes rendus hebdomadaires des séances de l’Académie des sciences, T226: 216–218. MathSciNetMATHGoogle Scholar
  87. 87.
    Vallarta, Manuel Sandoval. 1924. Bohr’s Atomic Model from the Standpoint of the General Theory of Relativity and of the Calculus Of Perturbations. Ph.D. thesis, Cambridge, MA, USA: Massachusetts Institute of Technology. Google Scholar
  88. 88.
    von Borzeszkowski, Horst-Heino and Hans J. Treder. 1988. The Meaning of Quantum Gravity. Dordrecht: D. Reidel Publishing Company. Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Astronomy “G. Galilei”PadovaItaly

Personalised recommendations