Skip to main content

The positive muon implanted in metals – a story full of surprises


During the period 1975–1990 there was an intense development, at some accelerator laboratories, of a new spectroscopy based on the interaction of an elementary particle, the positive muon, with local magnetic fields present in magnets and superconductors. It was called μSR (or in some applications MuSR), which stands for Muon Spin Rotation or Muon Spin Relaxation. At the present time this spectroscopy has given access to detailed information (often unobtainable with other means), on a large number of magnetic, semiconducting and superconducting systems, but the present article deals with another aspect of μSR, namely the information it could provide on how a light positive particle behaves when placed in a metallic environment. This behaviour has much in common with that of the technologically important “hydrogen in metal”-problem, but could now be studied in a very direct way since the positive muon is radioactive and sends out an easily detectable signal. This signal contains information on the particle’s local environment, its motion from one lattice position to another, its trapping and release from other impurity atoms in the metal and also on the character of the motion itself, particularly at low temperatures where quantum effects dominate. It took nearly 15 years to fully interpret and understand these phenomena which is the topic of the present historic presentation.

This is a preview of subscription content, access via your institution.


  1. B.E. Karlsson, Solid State Phenomena – as Seen by Muons, protons and Excited Nuclei (Oxford University Press, Oxford, 1993)

  2. O. Hartmann, E. Karlsson, L.-O. Norlin, T.O. Niinikoski, K.W. Kehr, D. Richter, J.-M. Welter, A. Yaouanc, J. Le Hericy Studies of muon localization in Cu, Al, and Al-alloys in the temperature interval 0.03–100 K, Phys. Rev. Lett. 44, 337 (1980)

    Article  ADS  Google Scholar 

  3. O. Hartmann, Quadrupole influence on the dipolar field width for a single interstitial in a metal crystal, Phys. Rev. Lett. 39, 832 (1977)

    Article  ADS  Google Scholar 

  4. K.W. Kehr, D. Richter, J.-M. Welter, O. Hartmann, E. Karlsson, L.-O. Norlin, T.O. Niinikoski, A. Yaouanc, Muon diffusion in aluminium and dilute aluminium alloys. Experiments and comparison with small-polaron theory, Phys. Rev. B 26, 567 (1982)

    Article  ADS  Google Scholar 

  5. O. Hartmann, E. Karlsson, E. Wäckelgård, R. Wäppling, D. Richter, R. Hempelmann, T.O. Niinikoski, Low temperature diffusion and trapping of muons in aluminium: new experiments and comparison with theory, Hyperfine Interactions 31, 223 (1986)

    Article  ADS  Google Scholar 

  6. O. Hartmann, E. Karlsson, R. Wäppling, D. Richter, R. Hempelmann, K. Schulze, B. Patterson, E. Holzschuh, W. Kündig, S.F.J. Cox, Trap identification and impurity-induced localization of muons in Nb, Phys. Rev. B 27, 1943 (1983)

    Article  ADS  Google Scholar 

  7. M. Borghini, T.O. Niinikoski, J.C. Soulié, O. Hartmann, E. Karlsson, L.-O. Norlin, K. Pernestål, K.W. Kehr, D. Richter, E. Walker, Muon diffusion in Nb in the presence of traps, Phys. Rev. Lett. 40, 1723 (1978)

    Article  ADS  Google Scholar 

  8. O. Hartmann, L.-O. Norlin, A. Yaouanc, J. LeHericy, E. Karlsson, T.O. Niinikoski, Low temperature studies of muon localization in copper, Hyperfine Interactions 8, 533 (1981)

    Article  ADS  Google Scholar 

  9. J.-M. Welter, D. Richter, R. Hempelmann, O. Hartmann, E. Karlsson, L.-O. Norlin, T.O. Niinikoski, D. Lenz, Muon diffusion in copper below 2 K, Z. Phys. B 52, 303 (1983)

    Article  ADS  Google Scholar 

  10. J. Brewer, M. Celio, D.R. Harshman, R. Keitel, S.R. Kreitzman, G.M. Luke, Determination of the very slow μ+ hop rates in Cu by LLF-μSR, Hyperfine Interactions 31, 191 (1986)

    Article  ADS  Google Scholar 

  11. J. Kondo, Muon diffusion in metals, Hyperfine Interactions 31, 117 (1986)

    Article  ADS  Google Scholar 

  12. H. Wipf, K. Neumaier, H and D tunneling in niobium, Phys. Rev. Lett. 52, 1308 (1984)

    Article  ADS  Google Scholar 

  13. J. Kondo, in Fermi Surface Effects, edited by J. Kondo and A. Yoshimori, Solid State Sciences 77 (Springer, Berlin, 1988)

  14. Yu. Kagan, N.V. Prokofe’v, in Quantum Tunneling in Condensed Media, edited by Yu. Kagan and A.J. Legget (Elsevier, Amsterdam, 1992)

  15. H.J. Fell, R. Hempelmann, O. Hartmann, S. Harris, R. Wäppling, Diffusion of positive muons in niobium doped with titanium. Ber, Bunsenges. Phys. Chem. 95, 1091 (1991)

    Article  Google Scholar 

  16. R. Kadono, R.F. Kiefl, S.R. Kreizman, Q. Li, T. Pfiz, T.M. Riseman, H. Zhou, R. Wäppling, S.W. Harris O. Hartmann E. Karlsson R. Hempelman D. Richter T.O. Niinikoski L.P. Lee B. Sternlieb E.J. Ansaldo Quantum diffusion of the positive muon in the superconducting state of Al, Hyperfine Interactions 64, 737 (1993)

    Article  ADS  Google Scholar 

  17. E. Karlsson, New aspects of tunneling of flight interstitial particles in solids, Physica B 202, 234 (1994)

    MathSciNet  Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Erik B. Karlsson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karlsson, E. The positive muon implanted in metals – a story full of surprises. EPJ H 39, 303–323 (2014).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:


  • Impurity Atom
  • Trapping Site
  • Muon Spin
  • Trapping Rate
  • Tunneling State