The European Physical Journal H

, Volume 38, Issue 4, pp 471–506 | Cite as

50 Years of experimental particle physics in Bonn. A personal recollection

  • Ewald Paul
Personal recollection


The first synchrotron for electrons in Europe was built at the Physikalisches Institut Bonn in the fifties, and two electron accelerators were built in the following decades. For fifty years, accelerators in Bonn have been in use for studying particle physics in scattering experiments with electron and photon beams, and for research and development of new detector components in both accelerator and experimental technology. Also, for fifty years, experimental groups in Bonn have worked on external experiments at accelerators and storage rings in the large research centres CERN and DESY. In this article, the long history of experimental particle physics in Bonn and at external accelerators is reviewed. It is shown that the interplay between an institute at a university and research centres can be very fruitful. Running accelerators at the institute supported by well equipped workshops were the basis for a wide range of technical developments. Most of the work was carried out in the hands of students. This was successful and guaranteed optimal possibilities for their education. The article is based on the personal recollection of the author.


Large Hadron Collider Bubble Chamber Polarise Target Proton Synchrotron Transition Radiation Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The ALEPH Collaboration et al. 2006. Precision Electroweak Measurement on the Z Resonance. Phys. Rep. 427: 257 ADSGoogle Scholar
  2. 2.
    Althoff, K.-H. 1969. Das 2.5 GeV-Electronen-Synchrotron der Universität Bonn. Sonderdruck des Landesamts für Forschung, JAHRBUCH 1969, Westdeutscher Verlag, Köln und Opladen Google Scholar
  3. 3.
    Althoff, K.-H. et al. 1977. Photoproduction of pions on polarised protons and neutrons in the second resonance region. Nucl. Phys. B 131: 1 ADSCrossRefGoogle Scholar
  4. 4.
    Anderson, H.L. et al. 1952. Total Cross Sections of Positive Pions in Hydrogen. Phys. Rev. 85: 936 ADSCrossRefGoogle Scholar
  5. 5.
    Apsimon, R.J. et al. 1989. Inclusive photoproduction of single charged particles at high P(T). Z. Phys. C 43: 63 ADSCrossRefGoogle Scholar
  6. 6.
    ATLAS Collaboration. 2012. Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS detector at the LHC. Phys. Lett. B 716: 1 ADSCrossRefGoogle Scholar
  7. 7.
    Barnes, V. et al. 1964. Observation of a Hyperon with Strangeness Minus Three. Phys. Rev. Lett. 12: 204 ADSCrossRefGoogle Scholar
  8. 8.
    Barth, J. et al. 2003. Evidence for the positive-strangeness pentaquark Θ+ in photoproduction with the SAPHIR detector at ELSA. Phys. Lett. B 572: 127 ADSCrossRefGoogle Scholar
  9. 9.
    Baum G. and U. Koch 1969. A Source of Polarized Electrons. Nucl. Instr. and Meth. 71: 189 ADSCrossRefGoogle Scholar
  10. 10.
    Boden, B. et al. 1991. Elastic electron deuteron scattering on a tensor polarised solid N D3 target. Z. Physik C 49: 175 CrossRefGoogle Scholar
  11. 11.
    Brandt, S. 1963. Wechselwirkung von negativen π-Mesonen eines Impulses von 10 GeV mit Protonen unter besonderer Beruecksichtigung der Erzeugung seltsamer Teilchen und der Methoden zur Auswertung von Blasenkammerbildern. Ph.D thesis, Bonn Google Scholar
  12. 12.
    Breidenbach, M. el al. 1969. Observed Behavior of Highly Inelastic Electron-Proton Scattering, Phys. Rev. Lett. 23: 935 ADSCrossRefGoogle Scholar
  13. 13.
    Brianti, G. 2004. CERN’s contributions to accelerators and beams. Eur. Phys. J. C 34: 15 ADSCrossRefGoogle Scholar
  14. 14.
    Burmester, R. 2010. Die vier Leben einer Machine. Deutsches Museum. Abhandlungen und Berichte. Neue Folge. Band 26. Wallstein Verlag Google Scholar
  15. 15.
    Chekanov, S. et al. 2007. Jet-radius dependence of inclusive-jet cross sections in deep inelastic scattering at HERA. Phys. Lett. B 649: 12 ADSCrossRefGoogle Scholar
  16. 16.
    CMS Collaboration. 2012. Observation of a new boson at a mass of 125 GeV with the CMS detector at the LHC. Phys. Lett. B 716: 36 ADSGoogle Scholar
  17. 17.
    Courant, E.D., S. Livingston, H.S. Snyder 1952. The Strong-Focusing Synchrotron - a New High Energy Accelerator. Phys. Rev. 88: 11190 ADSCrossRefGoogle Scholar
  18. 18.
    Drees, J. and W. Paul 1964. Beschleunigung von Elektronen in einem Plasmabetatron. Z. Phys. 180: 340 ADSCrossRefGoogle Scholar
  19. 19.
    Dutz, H. et al. 1995. An internal superconducting holding coil for frozen spin targets. Nucl. Instr. and Meth. A 256: 111 ADSCrossRefGoogle Scholar
  20. 20.
    Dutz, H. et al. 2004. Experimental Check of the Gerasimov-Drell-Hearn Sum Rule on H. Phys. Rev. Lett. 93: 032003 ADSCrossRefGoogle Scholar
  21. 21.
    Edwards, R. et al. 2011. Nuclear Physics from Lattice QCD. arXiv:1104.5152 Google Scholar
  22. 22.
    Englert, F. and R. Brout 1964. Broken symmetry and the Mass of Gauge Vector Bosons. Phys. Rev. Lett. 13: 321 MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Freytag, D. et al. 1965. Measurement of the Cross Sections for the Photoproduction of Positive Pions on Hydrogen in the Region of the first Resonance. Z. Phys. 186: 1 ADSCrossRefGoogle Scholar
  24. 24.
    Gattringer, C. and C.B. Lang 2010. Quantumchromodynamics on the Lattice, Springer Google Scholar
  25. 25.
    Gell-Mann, M. and Y. Ne’eman 1964. The Eightfold Way. Frontiers in Physics. Publisher Benjamin, New York Google Scholar
  26. 26.
    Gell-Mann, M. 1964. A Schematic Model of Baryons and Mesons. Phys. Lett. 8: 214 ADSCrossRefGoogle Scholar
  27. 27.
    Glander, K.-H. et al. 2004. Measurement of γp → K+Λ and γp → K+Σ0 at photon energies up to 2.6 GeV. Eur. Phys. J. A 19: 251 ADSCrossRefGoogle Scholar
  28. 28.
    Grosse-Knetter, J. 2008. Concept, realization and characterization of serially powered pixel modules. Nucl. Instr. and Meth. A 568: 252 ADSCrossRefGoogle Scholar
  29. 29.
    Hicks, K.H. 2012. On the conundrum of the pentaquark. Eur. Phys. J. H 37: 1 MathSciNetCrossRefGoogle Scholar
  30. 30.
    Higgs, P. 1964. Broken Symmetries and the masses of the Gauge Bosons. Phys. Rev. Lett. 13: 508 MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Hillert, W. 2006. The Bonn Electron Stretcher Accelerator ELSA: Past and Future. Eur. Phys. J. A 28: 139 ADSCrossRefGoogle Scholar
  32. 32.
    Husmann, D. and W.J. Schwille 1988. ELSA - die neue Bonner Elektron-Stretcher-Anlage. Physikalische Blaetter 44, Nr.2: 40 CrossRefGoogle Scholar
  33. 33.
    Kolanoski, H. 1984. Two-Photon Physics at e+e− Storage Rings. Springer Tracts of Modern Physics 105 Google Scholar
  34. 34.
    Leutwyler, H. 1994. On the foundations of chiral perturbation theory. Annals of Physics 235: 165 MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Lohrmann, E. and P. Soeding 2009. Von schnellen Teilchen und hellem Licht, 50 Jahre Deutsches Elektronensynchrotron. Wiley-VCH Verlag, Weinheim Google Scholar
  36. 36.
    Loring, U. et al. 2001. The light baryon spectrum in a relativistic quark model with instanton induced quark forces: The non-strange baryon spectrum and ground states, Eur. Phys. J. A 10: 395 ADSCrossRefGoogle Scholar
  37. 37.
    Maharana, K. et al. 1979. Baryonium masses in a quark model. Phys. Rev. D 20: 2920 ADSCrossRefGoogle Scholar
  38. 38.
    Meyer, W. 1985. Present status of polarised targets for high intensity photon and electron beams. Nucl. Phys. B 446: 1 Google Scholar
  39. 39.
    Meyer, W. 1988. Polarised target physics at the Bonn electron accelerators. Physikalisches Institut Bonn. BN-IR-88-60 Google Scholar
  40. 40.
    Nakamura, K. et al. 2010. Review of Particle Properties. J. Phys. G 37: 075021 ADSCrossRefGoogle Scholar
  41. 41.
    Paul, E. 1976. Interference experiments with neutral kaons. Springer Tracts of Modern Physics 79: 53 ADSCrossRefGoogle Scholar
  42. 42.
    Paul, S. 2009. The puzzle of neutron lifetime. Nucl. Instr. and Meth. A 611: 157 ADSCrossRefGoogle Scholar
  43. 43.
    Paul, W. et al. 1989. Measurement of the neutron lifetime in a magnetic storage ring. Z. Phys. C 45: 25 CrossRefGoogle Scholar
  44. 44.
    Perl, M.L. et al. 1975. Evidence for Anomalous Lepton Production in e+e− annihilation. Phys. Rev. Lett. 35: 635 CrossRefGoogle Scholar
  45. 45.
    Plass, G. 2011. The CERN proton synchrotron: 50 years of reliable operation and continued development. Eur. Phys. J. H 36: 439 CrossRefGoogle Scholar
  46. 46.
    Schildknecht, D. 2006. Vector Meson Dominance. Acta Phys. Pol. B 37: 595 ADSGoogle Scholar
  47. 47.
    Schwela, D. et al. 1967. Evolution of Multipoles for Photo- and Electroproduction of Pions. Z. Phys. 202: 452 ADSCrossRefGoogle Scholar
  48. 48.
    Söding, P. 2010. On the discovery of the gluon. Eur. Phys. J. H 35: 1 CrossRefGoogle Scholar
  49. 49.
    Stahl, A. 1999. Physics with Tau Leptons. Springer Tracts of Modern Physics 160 Google Scholar
  50. 50.
    Stepanyan, S. et al. 2003. Observation of an Exotic S = 1 Baryon in Exclusive Photoproduction from the Deuteron. Phys. Rev. Lett. 91: 252001 ADSCrossRefGoogle Scholar
  51. 51.
    Trnka, D. et al. 2005. Observation of In-Medium Modifications of the ω Mesons. Phys. Rev. Lett. 94: 192303 ADSCrossRefGoogle Scholar
  52. 52.
    Tsemelis, E. 2011. Jack Steinberger: Memories of the PS and of LEP. Eur. Phys. J. H 36: 455 CrossRefGoogle Scholar
  53. 53.
    Zweig, G. 1964. An SU(3) Model for Strong Interactions and its Breaking. CERN Report Nr. TH 401, unpublished; Zweig, G. 1964. An SU(3) Model for Strong Interactions and its Breaking: II. CERN Report Nr. TH 412, unpublished Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Physikalisches Institut der Universität BonnBonnGermany

Personalised recommendations