Skip to main content
Log in

Towards high-energy neutrino astronomy

A historical review

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

The search for the sources of cosmic rays is a three-fold assault, using charged cosmic rays, gamma rays and neutrinos. The first conceptual ideas to detect high energy neutrinos date back to the late fifties. The long evolution towards detectors with a realistic discovery potential started in the seventies and eighties, with the pioneering works in the Pacific Ocean close to Hawaii and in Lake Baikal in Siberia. But only now, half a century after the first concepts, such a detector is in operation: IceCube at the South Pole. We do not yet know whether with IceCube we will indeed detect extraterrestrial high energy neutrinos or whether this will remain the privilege of next generation telescopes. But whatever the answer will be: the path to the present detectors was a remarkable journey. This review sketches its main milestones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasi, R. et al. (IceCube Coll.) 2009. Search for point sources of high energy neutrinos with final data from AMANDA-II. Phys. Rev. D 79 : 062001

    ADS  Google Scholar 

  • Abbasi, R. et al. (IceCube Coll.) 2010. Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy. Astropart. Phys. 33 : 277

    ADS  Google Scholar 

  • Abbasi, R. et al. (IceCube Coll.) 2011. Measurement of the atmospheric neutrino energy spectrum from 100 to 400 TeV with IceCube. Phys. Rev. D 83 : 012001

    ADS  Google Scholar 

  • Abbasi, A. et al. (IceCube Coll.) 2011. IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae, Astron. Astrophys. 535 : A109

    ADS  Google Scholar 

  • Abbasi, R. et al. (IceCube Coll.) 2011. Measurement of Acoustic Attenuation in South Pole Ice. Astropart. Phys. 34 : 382

    ADS  Google Scholar 

  • Abbasi, R. et al. (IceCube Coll.) 2011. Constraints on the extremely-high energy neutrino flux with the IceCube 2008-2009 data. Phys. Rev. D 83 : 092003

    ADS  Google Scholar 

  • Abbasi, A. et al. (IceCube Coll.) 2012. Neutrinos challenge Gamma Ray Burst origin of cosmic rays. Nature 484 : 351

    ADS  Google Scholar 

  • Abbasi, A. et al. (IceCube Coll.) 2012. Background studies for acoustic neutrino detection at the South Pole. Astropart. Phys. 35 : 312

    ADS  Google Scholar 

  • Abraham, J. et al., (Pierre Auger Coll.) 2008. Upper limit on the diffuse flux of UHE tau neutrinos from the Pierre Auger Observatory. Phys. Rev. Lett. 100 : 211101

    ADS  Google Scholar 

  • Achar, C. et al. 1965. Detection of muons produced by cosmic ray neutrinos deep underground. Phys. Lett. 18 : 196

    ADS  Google Scholar 

  • Ackermann, M. et al. (AMANDA Coll.) 2006a. Optical properties of deep glacial ice at the South Pole. J. Geophys. Res. 111 : D13203

    ADS  Google Scholar 

  • Ackermann, M. 2006b. Searches for signals from cosmic point-like sources of high energy neutrinos in 5 years of AMANDA-II data. Ph.D. thesis, Humboldt University Berlin, http://edoc.hu-berlin.de/docviews/abstract.php?lang=ger, id=27726

  • Ackermann, M. et al. (AMANDA Coll.) 2006c. The IceCube prototype string in AMANDA. Nucl. Instr. Meth. A 556 : 169

    ADS  Google Scholar 

  • Ageron, M. et al. (ANTARES Coll.) 2007. Studies of a full-scale mechanical prototype line for the ANTARES neutrino telescope and tests of a prototype instrument for deep-sea acoustic measurements. Nucl. Instr. Meth. A 581 : 695

    ADS  Google Scholar 

  • Ageron, M. et al. (ANTARES Coll.) 2011. ANTARES : The first undersea neutrino telescope. Nucl. Instr. Meth. A 656 : 11

    ADS  Google Scholar 

  • Aggouras, G. et al. (NESTOR Coll.) 2005a. Operation and performance of the NESTOR test detector. Nucl. Instr. Meth. A 552 : 420

    ADS  Google Scholar 

  • Aggouras, G. et al. (NESTOR Coll.) 2005b. A measurement of the cosmic-ray muon flux with a module of the NESTOR neutrino telescope. Astropart. Phys. 23 : 377

    ADS  Google Scholar 

  • Aguilar, J.A. et al. (ANTARES Coll.) 2011. A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope. Astropart. Phys. 34 : 652

    ADS  Google Scholar 

  • Ahmad, Q. et al. (SNO Collaboration) 2001. Measurement of the charged current interactions produced by B8 neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 87 : 071301

    ADS  Google Scholar 

  • Ahrens, J. et al. (AMANDA Coll.) 2004a. Muon track reconstruction and data selection techniques in AMANDA. Nucl. Instr. Meth. A 524 : 169

    ADS  Google Scholar 

  • Ahrens, J. et al. (IceCube Coll.) 2004b. Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos. Astropart. Phys. 20 : 507

    ADS  Google Scholar 

  • Aiello, S. et al. (NEMO Coll.) 2010. Measurement of the atmospheric muon flux with the NEMO Phase-1 detector. Astropart. Phys. 33 : 263

    ADS  Google Scholar 

  • Allison, P. et al. 2011. Design and Initial Performance of the Askaryan Radio Array Prototype EeV Neutrino Detector at the South Pole. submitted to Astropart. Phys., arXiv:1105.2854

    Google Scholar 

  • Alvarez-Muniz, J. and F. Halzen. 2002. Possible high-energy neutrinos from the cosmic accelerator RXJ 1713.7-3946. Astrophys. J. 576 : 233

    Google Scholar 

  • Ameli, F. (Ed.) 2009. Proc. 3rd Int. ARENA Workshop, Univ. Rome, 2008. Nucl. Instr. Meth. Suppl. A 604

  • Amram, P. et al. (ANTARES Coll.) 2000. Background light in potential sites for the ANTARES undersea neutrino telescope. Astropart. Phys. 13 : 127

    ADS  Google Scholar 

  • Amram, P. et al. (ANTARES Coll.) 2003. Sedimentation and fouling of optical surfaces at the ANTARES site. arXiv:astro-ph/0206454

  • Andres, E. et al. (AMANDA Coll.) 1999. The AMANDA Neutrino Telescope : Principle of Operation and First Results. Astropart. Phys. 13 : 1

    ADS  Google Scholar 

  • Andres, E. et al. (Amanda Coll.) 2001. Results from the AMANDA high-energy neutrino detector. Nucl. Phys. Proc. Suppl. 91 : 423

    ADS  Google Scholar 

  • ANTARES homepage : http://antares.in2p3.fr

  • Antonioli, P. et al. 2004. SNEWS : The supernova early warning system. New J. Phys. 6 : 114

    ADS  Google Scholar 

  • Anzalone, A, et al. 2012. The JEM-EUSO Mission : Status and Prospects, Contributions of the JEM-EUSO Collaboration to the 32nd ICRC, Beijing 2011, arXiv:1204.5065

  • Araki, T. et al. 2005. (Kamland Collaboration) Experimental investigation of geologically produced antineutrinos with KamLAND. Nature 436 : 499

    ADS  Google Scholar 

  • Askaryan, G. 1957. Hydrodynamic radiation from the tracks of ionizing particles in stable liquids. Sov. J. Atom. Energy 3 : 921

    Google Scholar 

  • Askaryan, G. 1962. Excess negative charge of an electron-photon shower and its coherent radio emission. Sov. Phys. JETP 14 : 441

    Google Scholar 

  • Askebjer, P. et al. (AMANDA Coll.) 1995. Optical properties of the South Pole ice at depths between 0.8 km and 1 km. Science 267 : 1147

    ADS  Google Scholar 

  • Aslanides, E. et al. (ANTARES Coll.) 1999. A deep sea telescope for high-energy neutrinos. arXiv:astro-ph/9907432

  • Avronin, A. et al. (Baikal Coll.) 2009. Search for high-energy Neutrinos in the Baikal Neutrino Experiment. Astron. Lett. 35 : 650

    Google Scholar 

  • Aynutdinov, V. et al. (Baikal Coll.) 2006a. Search for a diffuse flux of high-energy extraterrestrial neutrinos with the NT200 neutrino telescope. Astropart. Phys. 25 : 140

    ADS  Google Scholar 

  • Aynutdinov, V. et al. (Baikal Coll.) 2006b. The BAIKAL neutrino experiment : From NT200 to NT200+. Nucl. Instr. Meth. A 567 : 433

    ADS  Google Scholar 

  • Aynutdinov, V. et al. (Baikal Coll.) 2009. The prototype string for the km3-scale Baikal neutrino telescope. Nucl. Instr. Meth. A 602 : 227

    ADS  Google Scholar 

  • Babson, E. et al. (DUMAND Coll.) 1990. Cosmic ray muons in the deep ocean. Phys. Rev. D 42 : 3613

    ADS  Google Scholar 

  • Bagduev, R. et al. (Baikal Coll.) 1999. The optical module of the Baikal deep underwater neutrino telescope. Nucl. Instr. Meth. A 420 : 138

    ADS  Google Scholar 

  • Bagley, P. et al. (KM3NeT Coll.) 2008. Conceptual design report, ISBN 978-90-6488-031-5, available from : www.km3net.org

  • Bagley, P. et al. (KM3NeT Coll.) 2010. Technical design report, ISBN 978-90-6488-033-9, available from : www.km3net.org

  • Bahcall, J. 1994. Solar Neutrinos – the first thirty years. Addison-Wesley Publ. Comp., Reading

  • Baikal, http://baikalweb.jinr.ru

  • Balkanov, R. et al. (Baikal Coll.) 1997. Reconstruction of atmospheric neutrinos with the Baikal neutrino telescope NT-96. Astropart. Phys. 12 : 75

    ADS  Google Scholar 

  • Barwick, S. et al. (ANITA Coll.) 2006. Constraints on cosmic neutrino fluxes from the ANITA experiment. Phys. Rev. Lett. 96 : 171101

    ADS  Google Scholar 

  • Barwick, S. 2007. ARIANNA : A new concept for UHE neutrino detection. J. Phys. : Conf. Ser. 60 : 278

    ADS  Google Scholar 

  • Bellini, G. et al. 2010 (Borexino Collaboration). Observation of Geo-Neutrinos. Phys. Lett. B 687 : 299

    ADS  Google Scholar 

  • Belolaptikov, I. et al., The experimental limits on Q-ball flux with the Baikal deep underwater array Gyrlyanda, arXiv:astro-ph/9802223

  • Belotti, E. and M. Laveder. 1993. High energy neutrino detectors. Proc. 5th Int. Workshop on Neutrino Telescopes, edited by M.Baldo-Ceolin, Venice p. 275

  • Berezinsky, V. and G. Zatsepin. 1970. Cosmic neutrinos of superhigh energies. Yad. Fiz. 11 : 200

    Google Scholar 

  • Berezinsky, V. and A. Smirnov. 1975. Cosmic Neutrinos of Ultra-High Energies and Detection Possibility. Astrophys. Space Sci. 32 : 461

    ADS  Google Scholar 

  • Berezinsky, V. and O. Priludsky. 1977. High Energy Neutrinos from Supernova Explosions and Davis’ Experiment. Sov. Astron. Lett. 3 : 79

    ADS  Google Scholar 

  • Berezinsky, V. 1990. High energy neutrino astronomy. Proc. Int. Workshop on Neutrino Telescopes, edited by M.Baldo-Ceolin, Venice, p. 125

  • Bergeson, H. et al. 1967. Evidence for a new production process for 1012 eV muons. Phys. Rev. Lett. 19 : 1487

    ADS  Google Scholar 

  • Bergeson, H. G. Cassiday and M. Hendricks. 1973. Phys. Rev. Lett. 31 : 66

    ADS  Google Scholar 

  • Bezrukov, L.B. et al. (Baikal Coll.) 1984. Progress report on Lake Baikal neutrino experiment : Site studies and stationary string. Proc. XI. Conf. on Neutrino Physics and Astrophysics, Nordkirchen, Germany, p. 550

  • Bezrukov, L.B. et al. 1987. Properties and test results of a photon detector based on the combination of electro-optical preamplifier and a small photomultiplier. Proc. 2nd Int. Symp. Underground Physics-87, Baksan Valley, USSR, p. 230

  • Blondeau, F. for the ANTARES Coll. 1998. The ANTARES demonstrator : Towards a high-energy undersea neutrino telescope. Prog. Part. Nucl. Phys. 40 : 413

    ADS  Google Scholar 

  • Bobisut, F. 1991. NET : a Neutrino Telescope. Proc. 3nd Int. Workshop on Neutrino Telescope, edited by M. Baldo-Ceolin, Venice, p. 387

  • Bogatyrev, V. 1971. On the possibility of constructing large detectors for neutrino astronomy. Sov. J. Nucl. Phys. 13 : 187

    Google Scholar 

  • Boliev, M. et al. 1981. Limitations on parameters of neutrino oscillations according to data of the Baksan underground telescope (in Russian). Yad. Fiz. 34 : 1418

    Google Scholar 

  • Bosetti, P. et al. (DUMAND Coll.) 1988. DUMAND II : Proposal to construct a deep-ocean laboratory for the study of high energy neutrino astrophysics and particle physics. Tech. Rep. HDC-2-88, Hawaii DUMAND Center, University of Hawaii

  • Bosetti, P. 1991. JULIA, Proc. Trends in Astroparticle Physcis, edited by P. Bosetti, Aachen, p. 88

  • Bradner, H. (Ed.) 1977. Proc. Workshop on acoustic detection of atmospheric neutrinos (DUMAND 77)

  • Capone, A. et al. (NEMO Coll.) 2009. Recent results and perspectives of the NEMO project. Nucl. Instr. Meth. A 602 : 47

    ADS  Google Scholar 

  • Corstanje, A. et al. 2011. LOFAR : Detecting Cosmic Rays with a Radio Telescope, Contribution to 32nd ICRC, Beijing, 2011, arXiv:1109.5805

  • Costantini, M. and F. Vissani. 2005. Neutrinos from supernovas and supernova remnants, arXiv:astro-ph/0508152

  • Cowan, C. et al. 1956. Detection of the Free Neutrino : A Confirmation. Science 103 : 124

    Google Scholar 

  • Cowsik, R. et al. 1963. Flux of atmospheric neutrinos of different types at sea level and cosmic ray neutrino experiments. in Proc. Int. Cosmic Ray Conf. 1963, Vol. 6, p. 211

  • Crouch, M. et al. 1978. Cosmic-ray muon fluxes deep underground. Intensity vs. depth and the neutrino-induced component. Phys. Rev. D 18 : 2239

    ADS  Google Scholar 

  • Dagkesamanksii, R. V. Matveev and I. Zheleznykh. 2011. Prospects of radio detection of extremely high energy neutrinos bombarding the moon. Nucl. Instr. Meth. A 626 : S44

    ADS  Google Scholar 

  • Davis Jr., R et al. 1968. A search for neutrinos from the Sun. Phys. Rev. Lett. 20 : 1205

    ADS  Google Scholar 

  • Deneyko, A.O. et al. 1991. The tests of a prototype of an autonomous module of deep underwater neutrino telescope during October-December of 1989. Proc. 3rd Int. Workshop on Neutrino Telescopes, Venice, p. 407

  • De Rujula, D. and S. Glashow. 1984. Nuclearites – a novel form of cosmic radiation. Nature 312 : 734

    ADS  Google Scholar 

  • Dirac, P. 1931. Quantised singularities in the electromagnetic field. Proc. Roy. Soc. Lond. A 133 : 60

    ADS  Google Scholar 

  • Distefano, C. 2007. Detection potential to point-like neutrino sources with the NEMO-km3 telescope. Astrophys. Space Sci. 309 : 415

    ADS  Google Scholar 

  • Domogatsky G. and G. Zatsepin. 1965. On the experimental possibilities of the observation of neutrinos from collapsing stars. Proc. 9th Int. Conf. on Cosmic Rays, London, p. 1030

  • Domogatsky, G. et al. 1986. Present status of Baikal deep underwater experiment. Proc. XII. Conf. on Neutrino Physics and Astrophysics, Sendai, Japan, p. 737

  • Eberl, T. for the ANTARES Coll. 2011. Status and first results of the ANTARES neutrino telescope. Prog. Part. Nucl. Phys. 66 : 457

    ADS  Google Scholar 

  • Fargion, D. 2002. Discovering ultra high energy neutrinos by horizontal and upward tau air-showers : Evidences in terrestrial gamma flashes? Astrophys. J. 570 : 909

    ADS  Google Scholar 

  • Fargion, D. P. De Sanctis Lucentini and M. De Santis. 2004. Tau air showers from Earth. Astrophys. J. 613 : 1285

    ADS  Google Scholar 

  • Feinstein, F. for the ANTARES Coll. 1999. The ANTARES demonstrator towards an undersea neutrino telescope. Nucl. Phys. Proc. Suppl. 70 : 445

    ADS  Google Scholar 

  • Fermi, E. 1934. Versuch einer Theorie der β-Strahlen. Z. Physik 88 : 161

    ADS  Google Scholar 

  • Fernandez, E. et al. The High Energy Neutrino Astrophysics Panel, in High energy neutrino observatories, available from : www.lngs.infn.it/lngs/infn/contents/docs/pdf/panagic/henap2002.pdf

  • Fukuda, Y. et al. (Super-Kamiokande Coll.) 1998. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81 : 1562

    ADS  Google Scholar 

  • Gaisser, T. 1990. Prospects for neutrino astronomy. Proc. 2nd Workshop on Neutrino Telescopes, edited by M. Baldo-Ceolin, Venice, p. 397

  • Gigaton Volume Detector, Design Report (in Russian) at http://baikalweb.jinr.ru

  • Gorham, P. et al. 2004. Experimental limit on the cosmic diffuse ultra-high energy neutrino flux. Phys. Rev. Lett. 93 : 0041101

    ADS  Google Scholar 

  • Gorham, P. et al. 2007. Observations of the Askaryan effect in ice. Phys. Rev. Lett. 99 : 171101

    ADS  Google Scholar 

  • Gorham, P. et al. 2011. Observational constraints on the ultra-high energy cosmic neutrino flux from the second flight of the ANITA experiment. Erratum to Phys. Rev. D 82 : 022004

    ADS  Google Scholar 

  • Greisen, K. 1960. Cosmic Ray Showers. Ann. Rev. Nucl. Part. Sci. 10 : 63

    ADS  Google Scholar 

  • Grieder, P. 1994. DUMAND : Facts, Figures and Initial Operation. Proc. XVI Int. Conf. on Neutrino Physics and Astrophysics, Eilat, 1994

  • Gusev G. and I. Zhelesnykh. 1983. On the possibility of detection of neutrinos and muons on the basis of radio radiation of cascades in natural dielectric media. JETP Lett. 38 : 611

    ADS  Google Scholar 

  • Halzen, F. and J.G. Learned. 1988. High Energy Neutrino Detection in Deep Polar Ice. in Proc. 5th Int. Symp. on Very High-Energy Cosmic-Ray Interactions, Lodz, Poland

  • Halzen, F. and J. Learned. 1993. High energy neutrino astronomy : towards a 1 km3 detector. Proc. 5th Int. Workshop on Neutrino Telescopes, edited by Milla Baldo-Ceolin, Venice, p. 483

  • Halzen, F. 1995. Ice fishing for neutrinos, http://icecube.berkeley.edu/amanda/ice-fishing.html

  • Halzen, F. 1998. Antarctic Dreams, http://www.exploratorium.edu/origins/antarctica/tools/dreams1.html

  • Halzen, F. and D. Hooper. 2005. High energy neutrinos from the TeV blazar 1ES 1959+650. Astropart. Phys. 23 : 537

    ADS  Google Scholar 

  • Harwit, M. 1981. Cosmic Discovery, Basic Books Inc., New York

  • Heisenberg, W. 1936. Zur Theorie der Schauerbildung in der Höhenstrahlung. Z. Physik 101 : 533

    ADS  Google Scholar 

  • Hess, V. 1912. Über die Bedeutung der durchdringenden Strahlung bei sieben Freiluftballonfahrten. Phys. Z. 12 : 998

    Google Scholar 

  • IceCube, http://www.icecube.wisc.edu/

  • IceCube : a Kilometer-Scale Neutrino Observatory. 1999. A Proposal to the National Science Foundation. The U.S. institutions of the IceCube Collaboration

  • JEM-EUSO homepage : http://jemeuso.riken.jp/en/index.html

  • Johannson, S. 1991. Detection of High Energy Neutrinos. Proc. XXIIth ICRC, Dublin, p. 552

  • Kampert, K.-H. and A.A. Watson. 2012. Extensive air showers and ultra high-energy cosmic rays : a historical review. Eur. Phys. J. H 37 : 359-412

    Google Scholar 

  • Kappes, A. et al. 2007. Potential neutrino signals from galactic gamma-ray sources. Astrophys. J. 656 : 870

    ADS  Google Scholar 

  • Karaevsky, S. et al. 1993. Sea Acoustic Detection of Cosmic Objects (SADCO). Proc. 23rd ICRC, Calgary, Vol. 4, p. 550

  • Katz, U. and C. Spiering. 2012. High-energy neutrino astrophysics : Status and perspectives, to be published in Progress in Particle and Nuclear Physics, arXiv: 1111-0507

  • Kistler, M. and J. Beacom. 2006. Guaranteed and prospective galactic TeV neutrino sources. Phys. Rev. D 74 : 063007

    ADS  Google Scholar 

  • Kotzer, P. (Ed.) 1976. DUMAND-75, Proc. 1975 Summer DUMAND Study, Western Washington State College, Bellingham, WA

  • Kowalski, M. 2005. Measuring diffuse neutrino fluxes with IceCube. J. Cosm. Astropart. Phys. 0505 : 010

    ADS  Google Scholar 

  • Kravchenko, I. et al. 2006. RICE limits on the diffuse ultra-high energy neutrino flux. Phys. Rev. D 73 : 082002

    ADS  Google Scholar 

  • Krishnaswamy, M. et al. 1971. The Kolar Gold Fields Neutrino Experiment. I. The Interactions of Cosmic Ray Neutrinos. Proc. Roy. Soc. Lond. A 323 : 489

    ADS  Google Scholar 

  • Kropp, W. and M. Crouch. 1991. Some Reminiscences of the CWI Atmospheric Neutrino Experiment, in Neutrinos and Other Matter (Selected Works of Frederick Reines). World Scientific, p. 226

  • Kurahashi, N. J. Vandenbroucke and G. Gratta. 2010. Phys. Rev. D 82 : 073006

    ADS  Google Scholar 

  • Latridou, P. (Ed.) 2010. Proc. fourth Int. ARENA Workshop, 2010, Nantes. Nucl. Instr. Meth. 62 (2012)

  • Learned, J. (Ed.) 1979a. DUMAND-1979. Proc. of Khabarovsk and Lake Baikal Summer Workshops

  • Learned, J. 1979b. Acoustic radiation by charged atomic particles in liquids : An analysis. Phys. Rev. D 19 : 3239

    Google Scholar 

  • Learned, J. 1990. Future of high energy neutrino astronomy. Proc. 2nd Int. Workshop on Neutrino Telescope, edited by M. Baldo-Ceolin, Venice, p. 103

  • Learned, J. and S. Pakvasa. 1995. Detecting ν τ Oscillations at PeV Energies. Astropart. Phys. 3 : 276

    ADS  Google Scholar 

  • Lehtinen, N. et al. 2002. Sensitivity of an underwater acoustic array to ultra-high energy neutrinos. Astropart. Phys. 17 : 279

    ADS  Google Scholar 

  • Lorenz, E. and R. Wagner. 2012. Very-high energy gamma-ray astronomy. A 23-year success story. Eur. Phys. J. H 37 : 459-513

    Google Scholar 

  • Lowder, D. et al. 1991. Observation of muons using the polar ice cap as a Cherenkov detector. Nature 353 : 331

    ADS  Google Scholar 

  • Mannheim, K. R. Protheroe and J. Rachen. 2001. On the cosmic ray bound for models of extragalactic neutrino production. Phys. Rev. D 63 : 023003

    ADS  Google Scholar 

  • Markov, M.A. 1960a. On High Energy Neutrino Physics. in : Proc. 10th ICHEP, Rochester, p. 578

  • Markov, M. and I. Zheleznykh. 1960b. On High Energy Neutrino Physics in Cosmic Rays, in the Collection on High Energy Neutrino Physics, Dubna, p. 17

  • Markov, M. and I. Zheleznykh. 1961. On high energy neutrino physics in cosmic rays. Nucl. Phys. 27 : 385

    Google Scholar 

  • Markov, M. 1993. Rasmyshlyaja o fisikakh, o fisike, o mire (contemplating on physics, physicists and the world, in Russian), Nauka, p. 76

  • McDonald, A. et al. 2004. Astrophysical neutrino telescopes. Rev. Sci. Instrum. 75 : 293

    ADS  Google Scholar 

  • Morlino, G. P. Blasi and E. Amato. 2009. Gamma rays and neutrinos from supernova remnant RXJ 1713.7.3946. Astropart. Phys. 31 : 376

    ADS  Google Scholar 

  • Morse, R. 1993. The AMANDA Astronomy Project, Proc. 5th Int. Workshop on Neutrino Telescope, edited by M. Baldo-Ceolin, Venice, p. 309

  • Nahnhauer, R. and S. Boeser. (Eds.) 2006. Proc. Int. ARENA Workshop, Zeuthen 2005, World Sci. Publ. Co. PTE LTD, Singapore

  • Nahnhauer, R. A. Rostovtsev and D. Tosi. 2008. Permafrost - an alternative target material for ultra high energy neutrino detection? Nucl. Instr. Meth. A 29 : 29

    ADS  Google Scholar 

  • Nahnhauer, R. 2010. Acoustic particle detection – from early ideas to future benefits. Nucl. Instrum. Meth. A 662 : 20

    Google Scholar 

  • Nahnhauer, R. 2012. Acoustic detetction of ultra-high energy neutrinos : a snapshot. to appear in Nucl. Instrum. Meth. (to be published)

  • Narisimham, V. 2004. Perspectives of Experimental Neutrino Physics in India. Proc. Indian Natl. Sci. Acad. A 70 : 11

    Google Scholar 

  • NEMO, http://nemoweb.lns.infn.it

  • NESTOR, http://www.nestor.noa.gr/

  • Nishikawa, K. 1992. Proc. 4th Int. Workshop on Neutrino Telescopes, edited by M. Baldo-Ceolin, Venice, p. 337

  • Osborne, J. S. Said and A. Wolfendale. 1965. The energy spectra of cosmic ray neutrinos at ground level in the range 1–1000 GeV. Proc. Phys. Soc. 86 : 93

    ADS  Google Scholar 

  • Pauli, W. 1930. Liebe radioaktive Damen und Herren Letter printed in Physics Today (1978) 31 : 72

    Google Scholar 

  • Pierre Auger. Observatory homepage : http://www.auger.org

  • Pistilli, P. 1988. SINGAO : a very large telescope for neutrino and gamma astronomy and cosmic ray studies. Proc. Int. Workshop on Neutrino Telescope, edited by M. Baldo-Ceolin, p. 316

  • Price, B. 1996. Comparison of optical, radio, and acoustical detectors for ultrahigh-energy neutrinos. Astropart. Phys. 5 : 43

    ADS  Google Scholar 

  • Reimer, A. M. Böttcher and S. Postnikov. 2005. Neutrino emission in the hadronic synchrotron mirror model : the “orphan” TeV flare from 1ES 1959+650. Astrophys. J. 630 : 186

    ADS  Google Scholar 

  • Reines, F. 1960. Neutrino Interactions. Ann. Rev. Nucl. Part. Sci. 10 : 1

    ADS  Google Scholar 

  • Reines, F. et al. 1965. Evidence for high-energy cosmic-ray neutrino interactions. Phys. Rev. Lett. 15 : 9

    MathSciNet  Google Scholar 

  • Reines, F. 1981. Closing summary ν-81, in : Proc. 30th Int. Conf. on Neutrino Physics and Astrophysics, edited by V. Peterson, Vol. 2, p. 496

  • Resvanis, L. et al. (NESTOR Coll.) 1994. NESTOR : A neutrino particle astrophysics underwater laboratory for the Mediterranean. Nucl. Phys. Proc. Suppl. 35 : 294

    ADS  Google Scholar 

  • Roberts, A. (Ed.) 1976. DUMAND-76, Proc. 1976 Summer DUMAND Workshop. University of Hawaii, Honolulu, HI

  • Roberts, A. and G. Wilkins. (Eds.) 1978. DUMAND-78, Proc. 1978 Summer DUMAND Study

  • Roberts, A. 1992. The birth of high-energy neutrino astronomy : A personal history of the DUMAND project. Rev. Mod. Phys. 64 : 259

    ADS  Google Scholar 

  • Rubakov, V. 1981. Superheavy monopoles and proton decay. JETP Lett. 33 : 644

    ADS  Google Scholar 

  • Saltzberg, D. et al. 2001. Observation of the Askaryan effect : Coherent microwave Cherenkov emission from charge asymmetry in high energy particle cascades. Phys. Rev. Lett. : 2802

  • Sasaki, M. Y. Asaoha and M. Jobashi. 2003. Detecting very high energy neutrinos by the Telescope Array. Astropart. Phys. 19 : 37

    ADS  Google Scholar 

  • Scholten, O. et al. 2008. Improved flux limits for neutrinos with energies above 1022 ev from observations with the Westerbork Synthesis Radio Telescope. Phys. Rev. Lett. 103 : 191301

    ADS  Google Scholar 

  • Sobel, H. 1988. The GRANDE facility for the study of astrophysical sources and high-energy particle interactions. Proc. Int. Workshop on Neutrino Telescope, edited by M. Baldo-Ceolin, Venice, 233

  • Sokalski, I. and C. Spiering. (Eds.) (Baikal Coll.) 1992. The Baikal Neutrino Telescope NT-200. Tech. Rep. Baikal-92-03, DESY/INR

  • Spiering, C. 2011. Neutrino Detectors under Water and Ice, Landolt-Bornstein, New Series I, 21B2, 6.2. Springer Verlag

  • Stecker, F.W. 2005. A note on high energy neutrinos from AGN cores. Phys. Rev. D 72 : 107301

    ADS  Google Scholar 

  • Stenger, V. and J. Learned. 1992a. AGN Event Rates in DUMAND II, Proc. Workshop High Energy Neutrino Astrophysics, World Scientific, 288

  • Stenger, V. et al. (Eds.) 1992b. Proc. Workshop High Energy Neutrino Astrophysics, World Scientific

  • Svoboda, R. et al. 1987 (IMB Coll.). An upper limit on the flux of extraterrestrial neutrinos. Astrophys. J. 315 : 420

    ADS  Google Scholar 

  • Taiuti, M. et al. (NEMO Coll.) 2011. The NEMO project : A status report. Nucl. Instr. Meth. A 626 : S25

    ADS  Google Scholar 

  • Thompson, L. and S. Danahe. (Eds.) 2006. Proc. 2nd Int. ARENA Workshop, Univ. Northumbria. J. Phys. : Conf. Ser. 81

  • Uberall, H. and C. Cowan. 1965. Proposal to detect cosmic-ray neutrinos through the Cerenkov light of produced muons. Proc. CERN Conf. on Experimental Neutrino Physics, edited by C. Franzinetti, CERN, Vol. 496, pp. 65–32

  • van Aller, G. et al. 1986. A 35-cm Diameter Photomultiplier. Helve. Physica Acta 59 : 1119

    Google Scholar 

  • Volkova, L. and G. Zatsepin. 1965. Energetic spectra of muon and electron neutrinos in the atmosphere. Isv. AN USSR, Phys. Ser. 29 : 1749

    Google Scholar 

  • Waxman, E. and J. Bahcall. 1999. High-energy neutrinos from astrophysical sources : An upper bound. Phys. Rev. D 59 : 023002

    ADS  Google Scholar 

  • Weekes, T.C. et al. 1989. Observation of TeV gamma rays from the Crab nebula using the atmospheric Cerenkov imaging technique. Astrophys. J. 342 : 379

    ADS  Google Scholar 

  • Wiebusch, C. 1995. The detection of faint light in deep underwater neutrino telescopes, Ph.D. thesis, report PITHA 95/37 (Univ. Aachen)

  • Wischnewski, R. et al. 1993. The Lake Baikal Telescope NT-36 – a first deep underwater multi-string array. Proc. 3rd Int. NESTOR Workshop, Pylos, Greece, p. 213

  • Zatsepin, G. and V. Kuzmin. 1961. Neutrino production in the atmosphere. Sov. J. Exp. Theor. Phys. (JETP) 41 : 385

    Google Scholar 

  • Zheleznykh, I. 1988. Prospects for large scale detectors of super high-energy neutrinos (1015 to 1020 eV). Proc. 13rd Int. Conf. Neutrino Physics and Astrophysics, p. 528

  • Zheleznykh, I. 2006. Early years of high-energy neutrino physics in cosmic rays and neutrino astronomy. Int. J. Mod. Phys. A 21S1 : 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Spiering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiering, C. Towards high-energy neutrino astronomy. EPJ H 37, 515–565 (2012). https://doi.org/10.1140/epjh/e2012-30014-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2012-30014-2

Keywords

Navigation