The European Physical Journal H

, Volume 37, Issue 3, pp 515–565 | Cite as

Towards high-energy neutrino astronomy

A historical review
Part of the following topical collections:
  1. Topical issue: Cosmic rays, gamma rays, and neutrinos: a survey of 100 years of research


The search for the sources of cosmic rays is a three-fold assault, using charged cosmic rays, gamma rays and neutrinos. The first conceptual ideas to detect high energy neutrinos date back to the late fifties. The long evolution towards detectors with a realistic discovery potential started in the seventies and eighties, with the pioneering works in the Pacific Ocean close to Hawaii and in Lake Baikal in Siberia. But only now, half a century after the first concepts, such a detector is in operation: IceCube at the South Pole. We do not yet know whether with IceCube we will indeed detect extraterrestrial high energy neutrinos or whether this will remain the privilege of next generation telescopes. But whatever the answer will be: the path to the present detectors was a remarkable journey. This review sketches its main milestones.


Atmospheric Neutrino Neutrino Telescope Muon Neutrino High Energy Neutrino Pierre Auger Observatory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbasi, R. et al. (IceCube Coll.) 2009. Search for point sources of high energy neutrinos with final data from AMANDA-II. Phys. Rev. D 79 : 062001 ADSGoogle Scholar
  2. Abbasi, R. et al. (IceCube Coll.) 2010. Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy. Astropart. Phys. 33 : 277 ADSGoogle Scholar
  3. Abbasi, R. et al. (IceCube Coll.) 2011. Measurement of the atmospheric neutrino energy spectrum from 100 to 400 TeV with IceCube. Phys. Rev. D 83 : 012001 ADSGoogle Scholar
  4. Abbasi, A. et al. (IceCube Coll.) 2011. IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae, Astron. Astrophys. 535 : A109 ADSGoogle Scholar
  5. Abbasi, R. et al. (IceCube Coll.) 2011. Measurement of Acoustic Attenuation in South Pole Ice. Astropart. Phys. 34 : 382 ADSGoogle Scholar
  6. Abbasi, R. et al. (IceCube Coll.) 2011. Constraints on the extremely-high energy neutrino flux with the IceCube 2008-2009 data. Phys. Rev. D 83 : 092003 ADSGoogle Scholar
  7. Abbasi, A. et al. (IceCube Coll.) 2012. Neutrinos challenge Gamma Ray Burst origin of cosmic rays. Nature 484 : 351 ADSGoogle Scholar
  8. Abbasi, A. et al. (IceCube Coll.) 2012. Background studies for acoustic neutrino detection at the South Pole. Astropart. Phys. 35 : 312 ADSGoogle Scholar
  9. Abraham, J. et al., (Pierre Auger Coll.) 2008. Upper limit on the diffuse flux of UHE tau neutrinos from the Pierre Auger Observatory. Phys. Rev. Lett. 100 : 211101 ADSGoogle Scholar
  10. Achar, C. et al. 1965. Detection of muons produced by cosmic ray neutrinos deep underground. Phys. Lett. 18 : 196 ADSGoogle Scholar
  11. Ackermann, M. et al. (AMANDA Coll.) 2006a. Optical properties of deep glacial ice at the South Pole. J. Geophys. Res. 111 : D13203 ADSGoogle Scholar
  12. Ackermann, M. 2006b. Searches for signals from cosmic point-like sources of high energy neutrinos in 5 years of AMANDA-II data. Ph.D. thesis, Humboldt University Berlin,, id=27726
  13. Ackermann, M. et al. (AMANDA Coll.) 2006c. The IceCube prototype string in AMANDA. Nucl. Instr. Meth. A 556 : 169 ADSGoogle Scholar
  14. Ageron, M. et al. (ANTARES Coll.) 2007. Studies of a full-scale mechanical prototype line for the ANTARES neutrino telescope and tests of a prototype instrument for deep-sea acoustic measurements. Nucl. Instr. Meth. A 581 : 695 ADSGoogle Scholar
  15. Ageron, M. et al. (ANTARES Coll.) 2011. ANTARES : The first undersea neutrino telescope. Nucl. Instr. Meth. A 656 : 11 ADSGoogle Scholar
  16. Aggouras, G. et al. (NESTOR Coll.) 2005a. Operation and performance of the NESTOR test detector. Nucl. Instr. Meth. A 552 : 420 ADSGoogle Scholar
  17. Aggouras, G. et al. (NESTOR Coll.) 2005b. A measurement of the cosmic-ray muon flux with a module of the NESTOR neutrino telescope. Astropart. Phys. 23 : 377 ADSGoogle Scholar
  18. Aguilar, J.A. et al. (ANTARES Coll.) 2011. A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope. Astropart. Phys. 34 : 652 ADSGoogle Scholar
  19. Ahmad, Q. et al. (SNO Collaboration) 2001. Measurement of the charged current interactions produced by B8 neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 87 : 071301 ADSGoogle Scholar
  20. Ahrens, J. et al. (AMANDA Coll.) 2004a. Muon track reconstruction and data selection techniques in AMANDA. Nucl. Instr. Meth. A 524 : 169 ADSGoogle Scholar
  21. Ahrens, J. et al. (IceCube Coll.) 2004b. Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos. Astropart. Phys. 20 : 507 ADSGoogle Scholar
  22. Aiello, S. et al. (NEMO Coll.) 2010. Measurement of the atmospheric muon flux with the NEMO Phase-1 detector. Astropart. Phys. 33 : 263 ADSGoogle Scholar
  23. Allison, P. et al. 2011. Design and Initial Performance of the Askaryan Radio Array Prototype EeV Neutrino Detector at the South Pole. submitted to Astropart. Phys., arXiv:1105.2854Google Scholar
  24. Alvarez-Muniz, J. and F. Halzen. 2002. Possible high-energy neutrinos from the cosmic accelerator RXJ 1713.7-3946. Astrophys. J. 576 : 233 Google Scholar
  25. Ameli, F. (Ed.) 2009. Proc. 3rd Int. ARENA Workshop, Univ. Rome, 2008. Nucl. Instr. Meth. Suppl. A 604 Google Scholar
  26. Amram, P. et al. (ANTARES Coll.) 2000. Background light in potential sites for the ANTARES undersea neutrino telescope. Astropart. Phys. 13 : 127 ADSGoogle Scholar
  27. Amram, P. et al. (ANTARES Coll.) 2003. Sedimentation and fouling of optical surfaces at the ANTARES site. arXiv:astro-ph/0206454 Google Scholar
  28. Andres, E. et al. (AMANDA Coll.) 1999. The AMANDA Neutrino Telescope : Principle of Operation and First Results. Astropart. Phys. 13 : 1 ADSGoogle Scholar
  29. Andres, E. et al. (Amanda Coll.) 2001. Results from the AMANDA high-energy neutrino detector. Nucl. Phys. Proc. Suppl. 91 : 423 ADSGoogle Scholar
  30. ANTARES homepage :
  31. Antonioli, P. et al. 2004. SNEWS : The supernova early warning system. New J. Phys. 6 : 114 ADSGoogle Scholar
  32. Anzalone, A, et al. 2012. The JEM-EUSO Mission : Status and Prospects, Contributions of the JEM-EUSO Collaboration to the 32nd ICRC, Beijing 2011, arXiv:1204.5065Google Scholar
  33. Araki, T. et al. 2005. (Kamland Collaboration) Experimental investigation of geologically produced antineutrinos with KamLAND. Nature 436 : 499 ADSGoogle Scholar
  34. Askaryan, G. 1957. Hydrodynamic radiation from the tracks of ionizing particles in stable liquids. Sov. J. Atom. Energy 3 : 921 Google Scholar
  35. Askaryan, G. 1962. Excess negative charge of an electron-photon shower and its coherent radio emission. Sov. Phys. JETP 14 : 441 Google Scholar
  36. Askebjer, P. et al. (AMANDA Coll.) 1995. Optical properties of the South Pole ice at depths between 0.8 km and 1 km. Science 267 : 1147 ADSGoogle Scholar
  37. Aslanides, E. et al. (ANTARES Coll.) 1999. A deep sea telescope for high-energy neutrinos. arXiv:astro-ph/9907432Google Scholar
  38. Avronin, A. et al. (Baikal Coll.) 2009. Search for high-energy Neutrinos in the Baikal Neutrino Experiment. Astron. Lett. 35 : 650 Google Scholar
  39. Aynutdinov, V. et al. (Baikal Coll.) 2006a. Search for a diffuse flux of high-energy extraterrestrial neutrinos with the NT200 neutrino telescope. Astropart. Phys. 25 : 140 ADSGoogle Scholar
  40. Aynutdinov, V. et al. (Baikal Coll.) 2006b. The BAIKAL neutrino experiment : From NT200 to NT200+. Nucl. Instr. Meth. A 567 : 433 ADSGoogle Scholar
  41. Aynutdinov, V. et al. (Baikal Coll.) 2009. The prototype string for the km3-scale Baikal neutrino telescope. Nucl. Instr. Meth. A 602 : 227 ADSGoogle Scholar
  42. Babson, E. et al. (DUMAND Coll.) 1990. Cosmic ray muons in the deep ocean. Phys. Rev. D 42 : 3613 ADSGoogle Scholar
  43. Bagduev, R. et al. (Baikal Coll.) 1999. The optical module of the Baikal deep underwater neutrino telescope. Nucl. Instr. Meth. A 420 : 138 ADSGoogle Scholar
  44. Bagley, P. et al. (KM3NeT Coll.) 2008. Conceptual design report, ISBN 978-90-6488-031-5, available from :
  45. Bagley, P. et al. (KM3NeT Coll.) 2010. Technical design report, ISBN 978-90-6488-033-9, available from :
  46. Bahcall, J. 1994. Solar Neutrinos – the first thirty years. Addison-Wesley Publ. Comp., ReadingGoogle Scholar
  47. Balkanov, R. et al. (Baikal Coll.) 1997. Reconstruction of atmospheric neutrinos with the Baikal neutrino telescope NT-96. Astropart. Phys. 12 : 75 ADSGoogle Scholar
  48. Barwick, S. et al. (ANITA Coll.) 2006. Constraints on cosmic neutrino fluxes from the ANITA experiment. Phys. Rev. Lett. 96 : 171101 ADSGoogle Scholar
  49. Barwick, S. 2007. ARIANNA : A new concept for UHE neutrino detection. J. Phys. : Conf. Ser. 60 : 278 ADSGoogle Scholar
  50. Bellini, G. et al. 2010 (Borexino Collaboration). Observation of Geo-Neutrinos. Phys. Lett. B 687 : 299 ADSGoogle Scholar
  51. Belolaptikov, I. et al., The experimental limits on Q-ball flux with the Baikal deep underwater array Gyrlyanda, arXiv:astro-ph/9802223 Google Scholar
  52. Belotti, E. and M. Laveder. 1993. High energy neutrino detectors. Proc. 5th Int. Workshop on Neutrino Telescopes, edited by M.Baldo-Ceolin, Venice p. 275Google Scholar
  53. Berezinsky, V. and G. Zatsepin. 1970. Cosmic neutrinos of superhigh energies. Yad. Fiz. 11 : 200 Google Scholar
  54. Berezinsky, V. and A. Smirnov. 1975. Cosmic Neutrinos of Ultra-High Energies and Detection Possibility. Astrophys. Space Sci. 32 : 461 ADSGoogle Scholar
  55. Berezinsky, V. and O. Priludsky. 1977. High Energy Neutrinos from Supernova Explosions and Davis’ Experiment. Sov. Astron. Lett. 3 : 79 ADSGoogle Scholar
  56. Berezinsky, V. 1990. High energy neutrino astronomy. Proc. Int. Workshop on Neutrino Telescopes, edited by M.Baldo-Ceolin, Venice, p. 125Google Scholar
  57. Bergeson, H. et al. 1967. Evidence for a new production process for 1012 eV muons. Phys. Rev. Lett. 19 : 1487 ADSGoogle Scholar
  58. Bergeson, H. G. Cassiday and M. Hendricks. 1973. Phys. Rev. Lett. 31 : 66 ADSGoogle Scholar
  59. Bezrukov, L.B. et al. (Baikal Coll.) 1984. Progress report on Lake Baikal neutrino experiment : Site studies and stationary string. Proc. XI. Conf. on Neutrino Physics and Astrophysics, Nordkirchen, Germany, p. 550Google Scholar
  60. Bezrukov, L.B. et al. 1987. Properties and test results of a photon detector based on the combination of electro-optical preamplifier and a small photomultiplier. Proc. 2nd Int. Symp. Underground Physics-87, Baksan Valley, USSR, p. 230Google Scholar
  61. Blondeau, F. for the ANTARES Coll. 1998. The ANTARES demonstrator : Towards a high-energy undersea neutrino telescope. Prog. Part. Nucl. Phys. 40 : 413 ADSGoogle Scholar
  62. Bobisut, F. 1991. NET : a Neutrino Telescope. Proc. 3nd Int. Workshop on Neutrino Telescope, edited by M. Baldo-Ceolin, Venice, p. 387Google Scholar
  63. Bogatyrev, V. 1971. On the possibility of constructing large detectors for neutrino astronomy. Sov. J. Nucl. Phys. 13 : 187 Google Scholar
  64. Boliev, M. et al. 1981. Limitations on parameters of neutrino oscillations according to data of the Baksan underground telescope (in Russian). Yad. Fiz. 34 : 1418 Google Scholar
  65. Bosetti, P. et al. (DUMAND Coll.) 1988. DUMAND II : Proposal to construct a deep-ocean laboratory for the study of high energy neutrino astrophysics and particle physics. Tech. Rep. HDC-2-88, Hawaii DUMAND Center, University of HawaiiGoogle Scholar
  66. Bosetti, P. 1991. JULIA, Proc. Trends in Astroparticle Physcis, edited by P. Bosetti, Aachen, p. 88Google Scholar
  67. Bradner, H. (Ed.) 1977. Proc. Workshop on acoustic detection of atmospheric neutrinos (DUMAND 77)Google Scholar
  68. Capone, A. et al. (NEMO Coll.) 2009. Recent results and perspectives of the NEMO project. Nucl. Instr. Meth. A 602 : 47 ADSGoogle Scholar
  69. Corstanje, A. et al. 2011. LOFAR : Detecting Cosmic Rays with a Radio Telescope, Contribution to 32nd ICRC, Beijing, 2011, arXiv:1109.5805Google Scholar
  70. Costantini, M. and F. Vissani. 2005. Neutrinos from supernovas and supernova remnants, arXiv:astro-ph/0508152Google Scholar
  71. Cowan, C. et al. 1956. Detection of the Free Neutrino : A Confirmation. Science 103 : 124 Google Scholar
  72. Cowsik, R. et al. 1963. Flux of atmospheric neutrinos of different types at sea level and cosmic ray neutrino experiments. in Proc. Int. Cosmic Ray Conf. 1963, Vol. 6, p. 211Google Scholar
  73. Crouch, M. et al. 1978. Cosmic-ray muon fluxes deep underground. Intensity vs. depth and the neutrino-induced component. Phys. Rev. D 18 : 2239 ADSGoogle Scholar
  74. Dagkesamanksii, R. V. Matveev and I. Zheleznykh. 2011. Prospects of radio detection of extremely high energy neutrinos bombarding the moon. Nucl. Instr. Meth. A 626 : S44 ADSGoogle Scholar
  75. Davis Jr., R et al. 1968. A search for neutrinos from the Sun. Phys. Rev. Lett. 20 : 1205 ADSGoogle Scholar
  76. Deneyko, A.O. et al. 1991. The tests of a prototype of an autonomous module of deep underwater neutrino telescope during October-December of 1989. Proc. 3rd Int. Workshop on Neutrino Telescopes, Venice, p. 407 Google Scholar
  77. De Rujula, D. and S. Glashow. 1984. Nuclearites – a novel form of cosmic radiation. Nature 312 : 734 ADSGoogle Scholar
  78. Dirac, P. 1931. Quantised singularities in the electromagnetic field. Proc. Roy. Soc. Lond. A 133 : 60 ADSGoogle Scholar
  79. Distefano, C. 2007. Detection potential to point-like neutrino sources with the NEMO-km3 telescope. Astrophys. Space Sci. 309 : 415 ADSGoogle Scholar
  80. Domogatsky G. and G. Zatsepin. 1965. On the experimental possibilities of the observation of neutrinos from collapsing stars. Proc. 9th Int. Conf. on Cosmic Rays, London, p. 1030 Google Scholar
  81. Domogatsky, G. et al. 1986. Present status of Baikal deep underwater experiment. Proc. XII. Conf. on Neutrino Physics and Astrophysics, Sendai, Japan, p. 737 Google Scholar
  82. Eberl, T. for the ANTARES Coll. 2011. Status and first results of the ANTARES neutrino telescope. Prog. Part. Nucl. Phys. 66 : 457 ADSGoogle Scholar
  83. Fargion, D. 2002. Discovering ultra high energy neutrinos by horizontal and upward tau air-showers : Evidences in terrestrial gamma flashes? Astrophys. J. 570 : 909 ADSGoogle Scholar
  84. Fargion, D. P. De Sanctis Lucentini and M. De Santis. 2004. Tau air showers from Earth. Astrophys. J. 613 : 1285 ADSGoogle Scholar
  85. Feinstein, F. for the ANTARES Coll. 1999. The ANTARES demonstrator towards an undersea neutrino telescope. Nucl. Phys. Proc. Suppl. 70 : 445 ADSGoogle Scholar
  86. Fermi, E. 1934. Versuch einer Theorie der β-Strahlen. Z. Physik 88 : 161 ADSGoogle Scholar
  87. Fernandez, E. et al. The High Energy Neutrino Astrophysics Panel, in High energy neutrino observatories, available from :
  88. Fukuda, Y. et al. (Super-Kamiokande Coll.) 1998. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81 : 1562 ADSGoogle Scholar
  89. Gaisser, T. 1990. Prospects for neutrino astronomy. Proc. 2nd Workshop on Neutrino Telescopes, edited by M. Baldo-Ceolin, Venice, p. 397Google Scholar
  90. Gigaton Volume Detector, Design Report (in Russian) at
  91. Gorham, P. et al. 2004. Experimental limit on the cosmic diffuse ultra-high energy neutrino flux. Phys. Rev. Lett. 93 : 0041101 ADSGoogle Scholar
  92. Gorham, P. et al. 2007. Observations of the Askaryan effect in ice. Phys. Rev. Lett. 99 : 171101 ADSGoogle Scholar
  93. Gorham, P. et al. 2011. Observational constraints on the ultra-high energy cosmic neutrino flux from the second flight of the ANITA experiment. Erratum to Phys. Rev. D 82 : 022004 ADSGoogle Scholar
  94. Greisen, K. 1960. Cosmic Ray Showers. Ann. Rev. Nucl. Part. Sci. 10 : 63 ADSGoogle Scholar
  95. Grieder, P. 1994. DUMAND : Facts, Figures and Initial Operation. Proc. XVI Int. Conf. on Neutrino Physics and Astrophysics, Eilat, 1994Google Scholar
  96. Gusev G. and I. Zhelesnykh. 1983. On the possibility of detection of neutrinos and muons on the basis of radio radiation of cascades in natural dielectric media. JETP Lett. 38 : 611 ADSGoogle Scholar
  97. Halzen, F. and J.G. Learned. 1988. High Energy Neutrino Detection in Deep Polar Ice. in Proc. 5th Int. Symp. on Very High-Energy Cosmic-Ray Interactions, Lodz, Poland Google Scholar
  98. Halzen, F. and J. Learned. 1993. High energy neutrino astronomy : towards a 1 km3 detector. Proc. 5th Int. Workshop on Neutrino Telescopes, edited by Milla Baldo-Ceolin, Venice, p. 483 Google Scholar
  99. Halzen, F. 1995. Ice fishing for neutrinos,
  100. Halzen, F. and D. Hooper. 2005. High energy neutrinos from the TeV blazar 1ES 1959+650. Astropart. Phys. 23 : 537 ADSGoogle Scholar
  101. Harwit, M. 1981. Cosmic Discovery, Basic Books Inc., New YorkGoogle Scholar
  102. Heisenberg, W. 1936. Zur Theorie der Schauerbildung in der Höhenstrahlung. Z. Physik 101 : 533 ADSGoogle Scholar
  103. Hess, V. 1912. Über die Bedeutung der durchdringenden Strahlung bei sieben Freiluftballonfahrten. Phys. Z. 12 : 998 Google Scholar
  104. IceCube : a Kilometer-Scale Neutrino Observatory. 1999. A Proposal to the National Science Foundation. The U.S. institutions of the IceCube CollaborationGoogle Scholar
  105. Johannson, S. 1991. Detection of High Energy Neutrinos. Proc. XXIIth ICRC, Dublin, p. 552 Google Scholar
  106. Kampert, K.-H. and A.A. Watson. 2012. Extensive air showers and ultra high-energy cosmic rays : a historical review. Eur. Phys. J. H 37 : 359-412 Google Scholar
  107. Kappes, A. et al. 2007. Potential neutrino signals from galactic gamma-ray sources. Astrophys. J. 656 : 870 ADSGoogle Scholar
  108. Karaevsky, S. et al. 1993. Sea Acoustic Detection of Cosmic Objects (SADCO). Proc. 23rd ICRC, Calgary, Vol. 4, p. 550Google Scholar
  109. Katz, U. and C. Spiering. 2012. High-energy neutrino astrophysics : Status and perspectives, to be published in Progress in Particle and Nuclear Physics, arXiv: 1111-0507Google Scholar
  110. Kistler, M. and J. Beacom. 2006. Guaranteed and prospective galactic TeV neutrino sources. Phys. Rev. D 74 : 063007 ADSGoogle Scholar
  111. Kotzer, P. (Ed.) 1976. DUMAND-75, Proc. 1975 Summer DUMAND Study, Western Washington State College, Bellingham, WA Google Scholar
  112. Kowalski, M. 2005. Measuring diffuse neutrino fluxes with IceCube. J. Cosm. Astropart. Phys. 0505 : 010 ADSGoogle Scholar
  113. Kravchenko, I. et al. 2006. RICE limits on the diffuse ultra-high energy neutrino flux. Phys. Rev. D 73 : 082002 ADSGoogle Scholar
  114. Krishnaswamy, M. et al. 1971. The Kolar Gold Fields Neutrino Experiment. I. The Interactions of Cosmic Ray Neutrinos. Proc. Roy. Soc. Lond. A 323 : 489 ADSGoogle Scholar
  115. Kropp, W. and M. Crouch. 1991. Some Reminiscences of the CWI Atmospheric Neutrino Experiment, in Neutrinos and Other Matter (Selected Works of Frederick Reines). World Scientific, p. 226Google Scholar
  116. Kurahashi, N. J. Vandenbroucke and G. Gratta. 2010. Phys. Rev. D 82 : 073006 ADSGoogle Scholar
  117. Latridou, P. (Ed.) 2010. Proc. fourth Int. ARENA Workshop, 2010, Nantes. Nucl. Instr. Meth. 62 (2012)Google Scholar
  118. Learned, J. (Ed.) 1979a. DUMAND-1979. Proc. of Khabarovsk and Lake Baikal Summer Workshops Google Scholar
  119. Learned, J. 1979b. Acoustic radiation by charged atomic particles in liquids : An analysis. Phys. Rev. D 19 : 3239Google Scholar
  120. Learned, J. 1990. Future of high energy neutrino astronomy. Proc. 2nd Int. Workshop on Neutrino Telescope, edited by M. Baldo-Ceolin, Venice, p. 103Google Scholar
  121. Learned, J. and S. Pakvasa. 1995. Detecting ν τ Oscillations at PeV Energies. Astropart. Phys. 3 : 276 ADSGoogle Scholar
  122. Lehtinen, N. et al. 2002. Sensitivity of an underwater acoustic array to ultra-high energy neutrinos. Astropart. Phys. 17 : 279 ADSGoogle Scholar
  123. Lorenz, E. and R. Wagner. 2012. Very-high energy gamma-ray astronomy. A 23-year success story. Eur. Phys. J. H 37 : 459-513 Google Scholar
  124. Lowder, D. et al. 1991. Observation of muons using the polar ice cap as a Cherenkov detector. Nature 353 : 331 ADSGoogle Scholar
  125. Mannheim, K. R. Protheroe and J. Rachen. 2001. On the cosmic ray bound for models of extragalactic neutrino production. Phys. Rev. D 63 : 023003 ADSGoogle Scholar
  126. Markov, M.A. 1960a. On High Energy Neutrino Physics. in : Proc. 10th ICHEP, Rochester, p. 578 Google Scholar
  127. Markov, M. and I. Zheleznykh. 1960b. On High Energy Neutrino Physics in Cosmic Rays, in the Collection on High Energy Neutrino Physics, Dubna, p. 17Google Scholar
  128. Markov, M. and I. Zheleznykh. 1961. On high energy neutrino physics in cosmic rays. Nucl. Phys. 27 : 385 Google Scholar
  129. Markov, M. 1993. Rasmyshlyaja o fisikakh, o fisike, o mire (contemplating on physics, physicists and the world, in Russian), Nauka, p. 76Google Scholar
  130. McDonald, A. et al. 2004. Astrophysical neutrino telescopes. Rev. Sci. Instrum. 75 : 293 ADSGoogle Scholar
  131. Morlino, G. P. Blasi and E. Amato. 2009. Gamma rays and neutrinos from supernova remnant RXJ 1713.7.3946. Astropart. Phys. 31 : 376 ADSGoogle Scholar
  132. Morse, R. 1993. The AMANDA Astronomy Project, Proc. 5th Int. Workshop on Neutrino Telescope, edited by M. Baldo-Ceolin, Venice, p. 309Google Scholar
  133. Nahnhauer, R. and S. Boeser. (Eds.) 2006. Proc. Int. ARENA Workshop, Zeuthen 2005, World Sci. Publ. Co. PTE LTD, SingaporeGoogle Scholar
  134. Nahnhauer, R. A. Rostovtsev and D. Tosi. 2008. Permafrost - an alternative target material for ultra high energy neutrino detection? Nucl. Instr. Meth. A 29 : 29 ADSGoogle Scholar
  135. Nahnhauer, R. 2010. Acoustic particle detection – from early ideas to future benefits. Nucl. Instrum. Meth. A 662 : 20 Google Scholar
  136. Nahnhauer, R. 2012. Acoustic detetction of ultra-high energy neutrinos : a snapshot. to appear in Nucl. Instrum. Meth. (to be published)Google Scholar
  137. Narisimham, V. 2004. Perspectives of Experimental Neutrino Physics in India. Proc. Indian Natl. Sci. Acad. A 70 : 11 Google Scholar
  138. Nishikawa, K. 1992. Proc. 4th Int. Workshop on Neutrino Telescopes, edited by M. Baldo-Ceolin, Venice, p. 337 Google Scholar
  139. Osborne, J. S. Said and A. Wolfendale. 1965. The energy spectra of cosmic ray neutrinos at ground level in the range 1–1000 GeV. Proc. Phys. Soc. 86 : 93 ADSGoogle Scholar
  140. Pauli, W. 1930. Liebe radioaktive Damen und Herren Letter printed in Physics Today (1978) 31 : 72 Google Scholar
  141. Pierre Auger. Observatory homepage :
  142. Pistilli, P. 1988. SINGAO : a very large telescope for neutrino and gamma astronomy and cosmic ray studies. Proc. Int. Workshop on Neutrino Telescope, edited by M. Baldo-Ceolin, p. 316Google Scholar
  143. Price, B. 1996. Comparison of optical, radio, and acoustical detectors for ultrahigh-energy neutrinos. Astropart. Phys. 5 : 43 ADSGoogle Scholar
  144. Reimer, A. M. Böttcher and S. Postnikov. 2005. Neutrino emission in the hadronic synchrotron mirror model : the “orphan” TeV flare from 1ES 1959+650. Astrophys. J. 630 : 186 ADSGoogle Scholar
  145. Reines, F. 1960. Neutrino Interactions. Ann. Rev. Nucl. Part. Sci. 10 : 1 ADSGoogle Scholar
  146. Reines, F. et al. 1965. Evidence for high-energy cosmic-ray neutrino interactions. Phys. Rev. Lett. 15 : 9 MathSciNetGoogle Scholar
  147. Reines, F. 1981. Closing summary ν-81, in : Proc. 30th Int. Conf. on Neutrino Physics and Astrophysics, edited by V. Peterson, Vol. 2, p. 496Google Scholar
  148. Resvanis, L. et al. (NESTOR Coll.) 1994. NESTOR : A neutrino particle astrophysics underwater laboratory for the Mediterranean. Nucl. Phys. Proc. Suppl. 35 : 294 ADSGoogle Scholar
  149. Roberts, A. (Ed.) 1976. DUMAND-76, Proc. 1976 Summer DUMAND Workshop. University of Hawaii, Honolulu, HI Google Scholar
  150. Roberts, A. and G. Wilkins. (Eds.) 1978. DUMAND-78, Proc. 1978 Summer DUMAND Study Google Scholar
  151. Roberts, A. 1992. The birth of high-energy neutrino astronomy : A personal history of the DUMAND project. Rev. Mod. Phys. 64 : 259 ADSGoogle Scholar
  152. Rubakov, V. 1981. Superheavy monopoles and proton decay. JETP Lett. 33 : 644 ADSGoogle Scholar
  153. Saltzberg, D. et al. 2001. Observation of the Askaryan effect : Coherent microwave Cherenkov emission from charge asymmetry in high energy particle cascades. Phys. Rev. Lett. : 2802Google Scholar
  154. Sasaki, M. Y. Asaoha and M. Jobashi. 2003. Detecting very high energy neutrinos by the Telescope Array. Astropart. Phys. 19 : 37 ADSGoogle Scholar
  155. Scholten, O. et al. 2008. Improved flux limits for neutrinos with energies above 1022 ev from observations with the Westerbork Synthesis Radio Telescope. Phys. Rev. Lett. 103 : 191301 ADSGoogle Scholar
  156. Sobel, H. 1988. The GRANDE facility for the study of astrophysical sources and high-energy particle interactions. Proc. Int. Workshop on Neutrino Telescope, edited by M. Baldo-Ceolin, Venice, 233 Google Scholar
  157. Sokalski, I. and C. Spiering. (Eds.) (Baikal Coll.) 1992. The Baikal Neutrino Telescope NT-200. Tech. Rep. Baikal-92-03, DESY/INR Google Scholar
  158. Spiering, C. 2011. Neutrino Detectors under Water and Ice, Landolt-Bornstein, New Series I, 21B2, 6.2. Springer VerlagGoogle Scholar
  159. Stecker, F.W. 2005. A note on high energy neutrinos from AGN cores. Phys. Rev. D 72 : 107301 ADSGoogle Scholar
  160. Stenger, V. and J. Learned. 1992a. AGN Event Rates in DUMAND II, Proc. Workshop High Energy Neutrino Astrophysics, World Scientific, 288Google Scholar
  161. Stenger, V. et al. (Eds.) 1992b. Proc. Workshop High Energy Neutrino Astrophysics, World ScientificGoogle Scholar
  162. Svoboda, R. et al. 1987 (IMB Coll.). An upper limit on the flux of extraterrestrial neutrinos. Astrophys. J. 315 : 420 ADSGoogle Scholar
  163. Taiuti, M. et al. (NEMO Coll.) 2011. The NEMO project : A status report. Nucl. Instr. Meth. A 626 : S25 ADSGoogle Scholar
  164. Thompson, L. and S. Danahe. (Eds.) 2006. Proc. 2nd Int. ARENA Workshop, Univ. Northumbria. J. Phys. : Conf. Ser. 81 Google Scholar
  165. Uberall, H. and C. Cowan. 1965. Proposal to detect cosmic-ray neutrinos through the Cerenkov light of produced muons. Proc. CERN Conf. on Experimental Neutrino Physics, edited by C. Franzinetti, CERN, Vol. 496, pp. 65–32Google Scholar
  166. van Aller, G. et al. 1986. A 35-cm Diameter Photomultiplier. Helve. Physica Acta 59 : 1119 Google Scholar
  167. Volkova, L. and G. Zatsepin. 1965. Energetic spectra of muon and electron neutrinos in the atmosphere. Isv. AN USSR, Phys. Ser. 29 : 1749 Google Scholar
  168. Waxman, E. and J. Bahcall. 1999. High-energy neutrinos from astrophysical sources : An upper bound. Phys. Rev. D 59 : 023002 ADSGoogle Scholar
  169. Weekes, T.C. et al. 1989. Observation of TeV gamma rays from the Crab nebula using the atmospheric Cerenkov imaging technique. Astrophys. J. 342 : 379 ADSGoogle Scholar
  170. Wiebusch, C. 1995. The detection of faint light in deep underwater neutrino telescopes, Ph.D. thesis, report PITHA 95/37 (Univ. Aachen) Google Scholar
  171. Wischnewski, R. et al. 1993. The Lake Baikal Telescope NT-36 – a first deep underwater multi-string array. Proc. 3rd Int. NESTOR Workshop, Pylos, Greece, p. 213Google Scholar
  172. Zatsepin, G. and V. Kuzmin. 1961. Neutrino production in the atmosphere. Sov. J. Exp. Theor. Phys. (JETP) 41 : 385 Google Scholar
  173. Zheleznykh, I. 1988. Prospects for large scale detectors of super high-energy neutrinos (1015 to 1020 eV). Proc. 13rd Int. Conf. Neutrino Physics and Astrophysics, p. 528 Google Scholar
  174. Zheleznykh, I. 2006. Early years of high-energy neutrino physics in cosmic rays and neutrino astronomy. Int. J. Mod. Phys. A 21S1 : 1 Google Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.DESYZeuthenGermany

Personalised recommendations