Advertisement

The European Physical Journal H

, Volume 37, Issue 4, pp 605–618 | Cite as

From the seminar on Mathematical Statistical Physics in Moscow State University, 1962–1994. Hierarchical models and renormalisation group critical phenomena in the Dyson hierarchical model and renormalisation group

  • Pavel Bleher
Article
Part of the following topical collections:
  1. Topical issue: Seminar on Mathematical Statistical Physics in Moscow State University, 1962–1994

Abstract

We review some results on the critical phenomena in the Dyson hierarchical model and renormalisation group.

Keywords

Hierarchical Model Critical Exponent Critical Phenomenon Gibbs Distribution Unstable Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bleher, P. 1975. Second order phase transition in some models of ferromagnetism. Trans. Moscow Math. Soc. 33 : 155–222Google Scholar
  2. Bleher, P. 1977. On second order phase transitions in Dyson’s asymptotically hierarchical models. Uspehi Mat. Nauk 32 : 243–244MathSciNetGoogle Scholar
  3. Bleher, P. 1984. Phase separation phenomenon in the ϕ4-hierarchical model. Theor. Math. Phys. 61 : 226–240 (1984). Translated in : Theor. Math. Phys. 61 : 1107–1117MathSciNetGoogle Scholar
  4. Bleher, P. 1986. Theorem on Large Deviations in a Neighborhood of the Critical Point of the ϕ4-Hierarchical Model. Teor. Ver. Primen. 30 : 499–510 (1985). Translated in : Theory Probab. Appl. 30 : 529–541MathSciNetGoogle Scholar
  5. Bleher, P. and P. Major. 1984. Renormalization of Dyson’s hierarchical vector valued ϕ4-model at low temperatures. Commun. Math. Phys. 95 : 487–532MathSciNetADSMATHCrossRefGoogle Scholar
  6. Bleher, P. and P. Major. 1987. Critical phenomena and universal exponents in statistical physics. On Dyson’s hierarchical model. Ann. Probab. 15 : 431–477MathSciNetMATHCrossRefGoogle Scholar
  7. Bleher, P. and P. Major. 1988. The large-scale limit of Dyson’s hierarchical vector-valued model at low temperatures. The non-Gaussian case. Parts I, II. Annales de l’Institut Henri Poincaré, Série Physique Théorique 49 : 1–85, 87–143MathSciNetGoogle Scholar
  8. Bleher, P. and P. Major. 1989. The large-scale limit of Dyson’s hierarchical vector-valued model at low temperatures. The marginal case \(c = \sqrt 2\) Commun. Math. Phys. 125 : 43–69MathSciNetADSMATHCrossRefGoogle Scholar
  9. Bleher, P. and Ya.G. Sinai. 1973. Investigation of the critical point in models of the type of Dyson’s hierarchical model. Commun. Math. Phys. 33 : 23–42MathSciNetADSCrossRefGoogle Scholar
  10. Bleher, P. and Ya.G. Sinai. 1975. Critical exponents for Dyson’s asymptotically hierarchical models. Commun. Math. Phys. 45 : 247–278MathSciNetADSCrossRefGoogle Scholar
  11. Dyson, F.J. 1969. Existence of a phase transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12 : 91–107MathSciNetADSCrossRefGoogle Scholar
  12. Dyson, F.J. 1971. An Ising ferromagnet with discontinuous long-range order. Commun. Math. Phys. 21 : 269–283MathSciNetADSCrossRefGoogle Scholar
  13. Dyson, F.J. 1972. Existence and nature of phase transitions in one-dimensional Ising ferromagnets. Mathematical aspects of statistical mechanics, Proc. Sympos. Appl. Math., New York, 1971, SIAM-AMS Proceedings, Vol. V, pp. 1–12, Amer. Math. Soc., Providence, R.I. Google Scholar
  14. Fisher, M.E. 1967. The theory of equilibrium critical phenomena. Rep. Prog. Phys. 30 : 615–730ADSCrossRefGoogle Scholar
  15. Shifman, M. (Ed.). 2005. You failed your math test, comrade Einstein. World Scientific Publishing CompanyGoogle Scholar
  16. Sinai, Ya.G. 1982. Theory of phase transitions, Theory of phase transitions : rigorous results. International Series in Natural Philosophy, 108. Pergamon Press, Oxford-Elmsford, New York, viii+150 pp.Google Scholar
  17. Wilson, K.G. and J. Kogut. 1974. The renormalization group and the ε-expansion. Phys. Rep. 12C : 75–199ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Indiana University – Purdue University IndianopolisIndianopolisUSA

Personalised recommendations