The European Physical Journal H

, Volume 36, Issue 3, pp 401–406 | Cite as

Inconsistency in Fermi’s probability of the quantum states

  • M. R. Zaghloul


We point out an important hidden inconsistency in Fermi’s probability of the quantum states that engendered inconsistent/inaccurate equations-of-state extensively used in the literature to model nonideal plasma systems. The importance of this amendment goes beyond rectifying our comprehension and foundation of an important physical problem to influencing contemporary research results.


Entropy Partition Function Quantum State Emirate Stellar Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blinder, S.M. 1995. Canonical partition-function for the hydrogen-atom via the Coulomb propagator. J. Math. Phys. 36: 1208–1216 CrossRefADSMathSciNetGoogle Scholar
  2. Däppen, W. and A. Nayfonov. 2000. The Sun as an equation-of-state laboratory. Astrophys. J. Suppl. Series 127: 287–292CrossRefADSGoogle Scholar
  3. Fermi, E. 1923. Sulla probabilità degli stati quantici. Rend. Lincei 32: 493–495, reprinted in: Fermi, E. 1961. Note e Memorie (Collected Papers), Vol. 1, Academia Nazionale dei Lincei, The University of Chicago Press, Roma Google Scholar
  4. Fermi, E. 1924. The probability of the quantum state. Z. Phys. 26: 54–56 CrossRefADSGoogle Scholar
  5. Hummer, D.G. and D. Mihalas. 1988. The equation of state for stellar envelopes. 1. An occupation probability formalism for the truncation of internal partition-functions. Astrophys. J. 331: 794–814CrossRefADSGoogle Scholar
  6. Mihalas, D., W. Däppen and D.G. Hummer. 1988. The equation of state for stellar envelopes. 2. Algorithm and selected results. Astrophys. J. 331: 815–825CrossRefADSGoogle Scholar
  7. Nayfonov, A., W. Däppen, D.G. Hummer and D. Mihalas. 1999. The MHD equation of state with post-Holtsmark microfield distributions. Astrophys. J. 526: 451–464CrossRefADSGoogle Scholar
  8. Olsen, H.N. 1961. Partition function cutoff and lowering of ionization potential in an argon plasma. Phys. Rev. 124: 1703–1708 CrossRefADSGoogle Scholar
  9. Potekhin, A.Y. 1996. Ionization equilibrium of hot hydrogen plasma. Phys. Plasmas 3: 4156–4165CrossRefADSGoogle Scholar
  10. Strickle, S.J. 1966. Electronic partition function paradox. J. Chem. Educ. 43: 364–366 CrossRefGoogle Scholar
  11. Zel’dovich, Y.B. and Y.P. Raizer. 1966. Physics of ShockWaves and High-Temperature Hydrodynamic Phenomena, Vol. I, New York: AcademicGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Department of Physics, College of SciencesUnited Arab Emirates UniversityAl-AinUAE

Personalised recommendations