Effective fields in magnetic colloids and features of their magnetization kinetics

Abstract

We present results of magnetization and magnetic susceptibility dependence investigations performed for undecane-based ferrofluids with dominant of Brownian relaxation for particles. A robust and effective method of fine particle size characterization is presented. It is based on the core–shell model and the analysis of the dependence of saturation magnetization on particle concentration. A novel advantage method has been used as a straightforward way to determine the concentration dependence of the effective field related to particle interaction that was calculated from the experimentally obtained concentration dependence of low field susceptibility. The computed relationship is compared with the concentration dependences of effective fields derived from several well-known theoretical models. We present some peculiarities of the real part of dynamic magnetic susceptibility on temperature. Investigated features are defined both by the magnetic state of fine particles and by crystallization of carrier at the liquid to a solid phase transition. For the first time, the dependence of the magnetization relaxation time on the colloidal particle concentration and the magnitude of bias DC magnetic field was investigated experimentally. Results are in good agreement with theoretical predictions for moderate concentration and significantly differs for concentration greater 7 vol%. It is concluded that this effect can be related either to the enhanced particle interaction or to the transition of some particles from superparamagnetic to a ferromagnetic state. These predictions are verified through the calculation in terms of Cole–Cole diagrams methods.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: Mainly the analysis results are illustrated via fig. 14 and fig. 15. So adding the same data to this part of manuscript looks to be not reasonable.]

References

  1. 1.

    I. Torres-Díaz, C. Rinaldi, Soft Matter 10, 8584 (2014)

    ADS  Article  Google Scholar 

  2. 2.

    A. Joseph, S. Mathew, ChemPlusChem. 79(10), 1382–1420 (2014)

  3. 3.

    H. Löwen, Introduction to colloidal dispersions in external fields. Eur. Phys. J. Spec. Top 222(11), 2727–2737 (2013)

  4. 4.

    M.I. Shliomis, Sov. Phys. Uspekhi 17, 153 (1974)

    ADS  Article  Google Scholar 

  5. 5.

    J.L. Neuringer, R.E. Rosensweig, Phys. Fluids 7, 1927 (1964)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Y.I. Dikanskii, Magnetohydrodynamics 18, 237 (1982)

    Google Scholar 

  7. 7.

    A.F. Pshenichnikov, A.V. Lebedev, K.I. Morozov, Magnetohydrodynamics 23, 31 (1987)

    Google Scholar 

  8. 8.

    M.M. Maiorov, Magnetohydrodynamics 15, 135 (1979)

    Google Scholar 

  9. 9.

    E.Y. Blum, M.M. Maiorov, B.L. Nikoaru, A.O. Tsebers, Magnetohydrodynamics 23, 45 (1987)

    Google Scholar 

  10. 10.

    P.C. Fannin, S.W. Charles, T. Relihan, Meas. Sci. Technol. 4, 1160 (1993)

    ADS  Article  Google Scholar 

  11. 11.

    Y.I. Dikansky, A.G. Ispiryan, S.A. Kunikin, Dependence of the Magnetization Kinetics of Magnetic Dispersed Nanosystems on the Dispersed Phase Concentration and the Change of Its State. Russ. Phys. J. 62(10), 1944–1949 (2020)

  12. 12.

    W. F. Brown, Dielectrics (Springer, Berlin, Heidelberg 1956)

  13. 13.

    C.P. Bean, J. Appl. Phys. 26, 1381 (1955)

    ADS  Article  Google Scholar 

  14. 14.

    S.V. Vonsovsky, Magnetism (Wiley, New York, 1974)

    Google Scholar 

  15. 15.

    J.O. Sindt, P.J. Camp, S.S. Kantorovich, E.A. Elfimova, A.O. Ivanov, Phys. Rev. E 93, 1 (2016)

    Article  Google Scholar 

  16. 16.

    A.O. Ivanov, V.S. Zverev, S.S. Kantorovich, Soft Matter 12, 3507 (2016)

    ADS  Article  Google Scholar 

  17. 17.

    A.O. Ivanov, S.S. Kantorovich, V.S. Zverev, A.V. Lebedev, A.F. Pshenichnikov, P.J. Camp, J. Magn. Magn. Mater. 459, 252 (2018)

    ADS  Article  Google Scholar 

  18. 18.

    K. O’Grady, J. Popplewell, S.W. Charles, J. Magn. Magn. Mater. 39, 56 (1983)

    ADS  Article  Google Scholar 

  19. 19.

    A.F. Pshenichnikov, A.V. Lebedev, Colloid J. 67, 189 (2005)

    Article  Google Scholar 

  20. 20.

    A.A. Minakov, I.A. Zaitsev, U.I. Lesnih, J. Magn. Magn. Mater. 85, 60 (1990)

    ADS  Article  Google Scholar 

  21. 21.

    K. Butter, P.H. Bomans, P.M. Frederik, G.J. Vroege, A.P. Philipse, J. Phys. Condens. Matter 15, S1451 (2003)

    ADS  Article  Google Scholar 

  22. 22.

    Y.L. Raikher, A.F. Pshenichnikov, JETP Lett. 41, 109 (1985)

    Google Scholar 

  23. 23.

    M.F. Hansen, S. Mørup, J. Magn. Magn. Mater. 184, L262 (1998)

    ADS  Article  Google Scholar 

  24. 24.

    M. Tokuyama, Phys. Rev. E 54, R1062 (1996)

    ADS  Article  Google Scholar 

  25. 25.

    S. Mørup, M.F. Hansen, C. Frandsen, Beilstein J. Nanotechnol. 1, 182 (2010)

    Article  Google Scholar 

  26. 26.

    Y.I. Dikanskii, A.G. Ispiryan, S.A. Kunikin, A.V. Radionov, Tech. Phys. 60, 1204 (2015)

    Article  Google Scholar 

  27. 27.

    A.F. Pshenichnikov, M.I. Shliomis, Bull. Acad. Sci. USSR. Phys. Ser. 51, 26 (1987)

    Google Scholar 

  28. 28.

    S.A. Kunikin, Y.I. Dikanskii, Tech. Phys. 55, 866 (2010)

    Article  Google Scholar 

  29. 29.

    I.M. Aref’ev, A.G. Ispiryan, S.A. Kunikin, V.A. Sirunyan, Tech. Phys. 62, 517 (2017)

    Article  Google Scholar 

  30. 30.

    R. Kaiser, G. Miskolczy, J. Appl. Phys. 41, 1064 (1970)

    ADS  Article  Google Scholar 

  31. 31.

    E.S. Blums, A.O. Cebers, M.M. Maiorov, Magnetic Fluids (De Gruyter, Berlin, 1997)

    Google Scholar 

  32. 32.

    R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  33. 33.

    D. Bica, L. Vékás, M. Raşa, J. Magn. Magn. Mater. 252, 10 (2002)

    ADS  Article  Google Scholar 

  34. 34.

    K.I. Morozov, A.F. Pshenichnikov, Y.L. Raikher, M.I. Shliomis, J. Magn. Magn. Mater. 65, 269 (1987)

    ADS  Article  Google Scholar 

  35. 35.

    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2004)

    Google Scholar 

  36. 36.

    H. Thomas, R. Brout, J. Appl. Phys. 39, 624 (1968)

    ADS  Article  Google Scholar 

  37. 37.

    J.-C. Bacri, A. Cebers, A. Bourdon, G. Demouchy, B.M. Heegaard, B. Kashevsky, R. Perzynski, Phys. Rev. E 52, 3936 (1995)

    ADS  Article  Google Scholar 

  38. 38.

    E.V. Lakhtina, aF Pshenichnikov, Colloid J. 68, 294 (2006)

    Article  Google Scholar 

  39. 39.

    Y. Barash, Sov. J. Exp. Theor. Phys. 52, 1149 (1980)

    ADS  Google Scholar 

  40. 40.

    L.D. Landau, L.P. Pitaevskii, E.M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, Oxford, 1984)

    Google Scholar 

  41. 41.

    A.O. Ivanov, O.B. Kuznetsova, Phys. Rev. E 64, 041405 (2001)

    ADS  Article  Google Scholar 

  42. 42.

    B. Huke, M. Lücke, Phys. Rev. E 67, 051403 (2003)

    ADS  Article  Google Scholar 

  43. 43.

    H. Wochnowski, B. Mussig, Angew. Makromol. Chem. 111, 123 (1983)

    Article  Google Scholar 

  44. 44.

    M.I. Shliomis, A.F. Pshenichnikov, K.I. Morozov, I.Y. Shurubor, J. Magn. Magn. Mater. 85, 40 (1990)

    ADS  Article  Google Scholar 

  45. 45.

    M. Martsenyuk, Y.L. Raikher, M.I. Shliomis, Sov. J. Exp. Theor. Phys. 38, 413 (1974)

    ADS  Google Scholar 

  46. 46.

    T.M. Batrudinov, A.V. Ambarov, E.A. Elfimova, V.S. Zverev, A.O. Ivanov, Theoretical study of the dynamic magnetic response of ferrofluid to static and alternating magnetic fields. J. Magn. Magn. Mater. 431,180–183 (2017)

  47. 47.

    L.Y. Iskakova, A.Y. Zubarev, Magnetohydrodynamics 36, 165 (2000)

  48. 48.

    D.V. Berkov, L.Y. Iskakova, A.Y. Zubarev, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 79, 1 (2009)

    Article  Google Scholar 

  49. 49.

    S. Oda, Y. Kitamoto, AIP Adv. 7, 056729 (2017)

    ADS  Article  Google Scholar 

  50. 50.

    J.L. Dormann, L. Bessais, D. Fiorani, J. Phys. C Solid State Phys. 21, 2015 (1988)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of the base part of the governmental ordering for scientific research works (Project No. 0795-2020-0030). We gratefully thank Dr. Arthur Zakinyan for discussion and help with graphical abstract preparation.

Author information

Affiliations

Authors

Contributions

Yuri I. Dikansky was the leader of the team designed the research, developed a model for results analysis, did theoretical analysis of effective field models, and supervised the research. Anna G. Ispiryan took experimental measurements and did most of the computations for theoretical models. Igor M. Arefyev synthesized the samples for investigation and measured some physical properties of samples. Stanislav A. Kunikin made the experimental configuration for measuring all samples and did the analysis of the dispersion of magnetic susceptibility. All the authors have discussed the results and contributed to writing up the paper.

Corresponding author

Correspondence to Yuri I. Dikansky.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dikansky, Y.I., Ispiryan, A.G., Arefyev, I.M. et al. Effective fields in magnetic colloids and features of their magnetization kinetics. Eur. Phys. J. E 44, 2 (2021). https://doi.org/10.1140/epje/s10189-021-00015-y

Download citation