Skip to main content
Log in

Experiments and modeling of nonlinear frequency response of oscillations of a sessile droplet subjected to horizontal vibrations

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this paper, we experimentally studied the response frequency of oscillations of a sessile water droplet, subjected to horizontal vibrations at varying excitation frequency (5-250 Hz and 40 kHz) and amplitude (0.015 mm to 0.5 mm for low frequencies and 600nm for ultrasonic frequency), as well as static contact angle of the glass substrate (\( 30^{\circ}\), \( 75^{\circ}\) , \( 90^{\circ}\), \( 115^{\circ}\)). The droplets were pinned during the experiments and non-axisymmetric oscillation modes were excited due to the horizontal vibrations. For the first time, we observed that at a sufficiently high vibration amplitude, when the excitation frequency is lower than the smallest natural frequency of the sessile droplet, the droplet oscillates at a response frequency multiple of the excitation frequency. At higher excitation frequencies up to several hundreds of Hz, the droplet oscillates nearly at the excitation frequency. At ultrasonic excitation frequency, however, the droplet cannot follow the excitations, since there is a physical limitation for forming infinite modes (infinite wavenumber) on the surface of a small droplet. We have modeled these behaviors with a nonlinear mass-spring-damper system by combining two established models: the Duffing and Van der Pol equations, in order to simulate both nonlinear damping and stiffness.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Eslamian, Coatings 4, 60 (2014)

    Article  Google Scholar 

  2. Z. Wang, J. Zhe, Lab Chip 11, 1280 (2011)

    Article  Google Scholar 

  3. S. Bansal, P. Sen, Langmuir 33, 11047 (2017)

    Article  Google Scholar 

  4. J. Whitehill, A. Neild, T.W. Ng, S. Martyn, J. Chong, Appl. Phys. Lett. 98, 133503 (2011)

    Article  ADS  Google Scholar 

  5. S. Daniel, M.K. Chaudhury, P.G. de Gennes, Langmuir 21, 4240 (2005)

    Article  Google Scholar 

  6. V. Palero, J. Lobera, P. Brunet, N. Andres, M.P. Arroyo, Exp. Fluids 54, 1568 (2013)

    Article  Google Scholar 

  7. M. Eslamian, F. Soltani-Kordshuli, J. Coat. Technol. Res. 15, 271 (2018)

    Article  Google Scholar 

  8. B. Vukasinovic, M.K. Smith, A.R.I. Glezer, J. Fluid Mech. 587, 395 (2007)

    Article  ADS  Google Scholar 

  9. A.J. Milne, B. Defez, M. Cabrerizo-Vilchez, A. Amirfazli, Adv. Colloid Interface Sci. 203, 22 (2014)

    Article  Google Scholar 

  10. H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, 1932)

  11. A. Hemmerle, G. Froehlicher, V. Bergeron, T. Charitat, J. Farago, EPL 111, 24003 (2015)

    Article  ADS  Google Scholar 

  12. N. Yoshiyasu, K. Matsuda, R. Takaki, J. Phys. Soc. Jpn. 65, 2068 (1996)

    Article  ADS  Google Scholar 

  13. C.-T. Chang, S. Daniel, P.H. Steen, Phys. Rev. E 95, 033109 (2017)

    Article  ADS  Google Scholar 

  14. P. Brunet, J.H. Snoeijer, Eur. Phys. J. ST 192, 207 (2011)

    Article  Google Scholar 

  15. X. Noblin, A. Buguin, F. Brochard-Wyart, Eur. Phys. J. ST 166, 7 (2009)

    Article  Google Scholar 

  16. Z. Zhu, Z. Zhao, L. Lv, W. Chen, L. Dong, J. Appl. Fluid Mech. 11, 7 (2018)

    Google Scholar 

  17. M. Strani, F. Sabetta, J. Fluid Mech. 141, 233 (1984)

    Article  ADS  Google Scholar 

  18. M. Chiba, S. Michiue, I.J. Katayama, Sound Vib. 331, 1908 (2012)

    Article  ADS  Google Scholar 

  19. D.V. Lyubimov, T.P. Lyubimova, S.V. Shklyaev, Phys. Fluids 18, 012101 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. X. Noblin, A. Buguin, F. Brochard-Wyart, Eur. Phys. J. E 14, 395 (2004)

    Article  Google Scholar 

  21. I.G. Currie, Fundamental Mechanics of Fluids, 4th edition (CRC Press, Boca Raton, Florida, 2013)

  22. J.S. Sharp, D.J. Farmer, J. Kelly, Langmuir 27, 9367 (2011)

    Article  Google Scholar 

  23. J.S. Sharp, Soft Matter 8, 399 (2012)

    Article  ADS  Google Scholar 

  24. T. Kalmar-Nagy, B. Balachandran, in The Duffing Equation: Nonlinear Oscillators and their Behaviour, edited by I. Kovacic, M.J. Brennan (John Wiley & Sons, 2011)

  25. L. Chen, E. Bonaccurso, P. Deng, H. Zhang, Phys. Rev. E 94, 063117 (2016)

    Article  ADS  Google Scholar 

  26. R.M. Manglik, M.A. Jog, S.K. Gande, V. Ravi, Phys. Fluids 25, 082112 (2013)

    Article  ADS  Google Scholar 

  27. S. Mettu, M.K. Chaudhury, Langmuir 24, 10833 (2008)

    Article  Google Scholar 

  28. S. Lin, B. Zhao, S. Zou, J. Guo, Z. Wei, L. Chen, J. Colloid Interface Sci. 516, 86 (2018)

    Article  ADS  Google Scholar 

  29. F. Celestini, R. Kofman, Phys. Rev. E 73, 041602 (2006)

    Article  ADS  Google Scholar 

  30. P. Deepu, S. Chowdhuri, S. Basu, Chem. Eng. Sci. 118, 9 (2014)

    Article  Google Scholar 

  31. A. Qi, L.Y. Yeo, J.R. Friend, Phys. Fluids 20, 074103 (2008)

    Article  ADS  Google Scholar 

  32. A. Rahimzadeh, M. Eslamian, Int. J. Heat Mass Transf. 114, 786 (2017)

    Article  Google Scholar 

  33. J. Friend, L.Y. Yeo, Rev. Mod. Phys. 83, 647 (2011)

    Article  ADS  Google Scholar 

  34. A. Rahimzadeh, M.R. Ahmadian-Yazdi, M. Eslamian, Fluid Dyn. Res. 50, 065510 (2018)

    Article  ADS  Google Scholar 

  35. N. Gholampour, D. Brian, M. Eslamian, Coatings 8, 337 (2018)

    Article  Google Scholar 

  36. P. Deepu, S. Basu, R. Kumar, Phys. Fluids 25, 082106 (2013)

    Article  ADS  Google Scholar 

  37. T. Khan, M. Eslamian, Phys. Fluids 31, 082106 (2019)

    Article  ADS  Google Scholar 

  38. J. Miles, J. Fluid Mech. 222, 197 (2006)

    Article  ADS  Google Scholar 

  39. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (2nd edition) (Elsevier, 1987).

  40. D.M. Henderson, J.W. Miles, J. Fluid Mech. 275, 285 (2006)

    Article  ADS  Google Scholar 

  41. B. van der Pol, London Edinb. Dublin Philos. Mag. J. Sci. 2, 978 (1926)

    Article  Google Scholar 

  42. B. Van Der Pol, J. Van Der Mark, Nature 120, 363 (1927)

    Article  ADS  Google Scholar 

  43. M. Eslamian, Prog. Org. Coat. 113, 60 (2017)

    Article  Google Scholar 

  44. C.L. Shen, W.J. Xie, B. Wei, Phys. Rev. E 81, 046305 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Eslamian.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimzadeh, A., Khan, T. & Eslamian, M. Experiments and modeling of nonlinear frequency response of oscillations of a sessile droplet subjected to horizontal vibrations. Eur. Phys. J. E 42, 125 (2019). https://doi.org/10.1140/epje/i2019-11891-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11891-x

Keywords

Navigation