Skip to main content

Advertisement

Log in

Translocation of small molecules through engineered outer-membrane channels from Gram-negative bacteria

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Selective permeability is a key feature of biological membranes. It is controlled by the physico-chemical properties of the lipid bilayer and by channel-forming membrane proteins. Here we focus on the permeation of small molecules across channel-forming proteins in Gram-negative bacteria called porins and present a new approach based on artificial amino acids. We introduced Hco, a fluorescent amino acid with characteristic excitation and emission wavelengths, into OmpF and measured FRET from Hco to dissolved Bocillin FL using solubilized OmpF porins. We examined four variants of OmpF and by doing so, we were able to show that small molecules, like Bocillin FL, are remaining long enough in the porin in order to undergo FRET and produce a reproducible fluorescence signal. This finding opens the way to quantify translocation in the future by the simultaneous detection of resistive pulses and differential fluorescence with FRET as an example.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Nikaido, Microbiol. Mol. Biol. Rev. 67, 593 (2003)

    Article  Google Scholar 

  2. S. Tamber, M.M. Ochs, R.E. Hancock, H. Nikaido, J. Bacteriol. 188, 45 (2006)

    Article  Google Scholar 

  3. L.L. Silver, Bioorg. Med. Chem. 24, 6379 (2016)

    Article  Google Scholar 

  4. J.M. Blair, M.A. Webber, A.J. Baylay, D.O. Ogbolu, L.J. Piddock, Nat. Rev. Microbiol. 13, 42 (2015)

    Article  Google Scholar 

  5. T. Kostyanev, M.J. Bonten, S. O’Brien, H. Steel, S. Ross, B. Francois, E. Tacconelli, M. Winterhalter, R.A. Stavenger, A. Karlen, S. Harbarth, J. Hackett, H.S. Jafri, C. Vuong, A. MacGowan, A. Witschi, G. Angyalosi, J.S. Elborn, R. deWinter, H. Goossens, J. Antimicrob. Chemother. 71, 290 (2016)

    Article  Google Scholar 

  6. R.A. Stavenger, M. Winterhalter, Sci. Transl. Med. 6, 228ed7 (2014) See also https://doi.org/www.translocation.eu

    Article  Google Scholar 

  7. R. Tommasi, D.G. Brown, G.K. Walkup, J.I. Manchester, A.A. Miller, Nat. Rev. Drug Discov. 14, 529 (2015)

    Article  Google Scholar 

  8. D.J. Payne, M.N. Gwynn, D.J. Holmes, D.L. Pompliano, Nat. Rev. Drug Discov. 6, 29 (2007)

    Article  Google Scholar 

  9. D.J. Payne, L.F. Miller, D. Findlay, J. Anderson, L. Marks, Philos. Trans. R. Soc. Lond. B: Biol. Sci. 370, 20140086 (2015)

    Article  Google Scholar 

  10. M.K. Passarelli, A. Pirkl, R. Moellers, D. Grinfeld, F. Kollmer, R. Havelund, C.F. Newman, P.S. Marshall, H. Arlinghaus, M.R. Alexander, A. West, S. Horning, E. Niehuis, A. Makarov, C.T. Dollery, Nat. Methods 14, 1175 (2017)

    Article  Google Scholar 

  11. C.T. Dollery, Clin. Pharmacol. Ther. 93, 263 (2013)

    Article  Google Scholar 

  12. Y. Zhou, C. Joubran, L. Miller-Vedam, V. Isabella, A. Nayar, S. Tentarelli, A. Miller, Anal. Chem. 87, 3579 (2015)

    Article  Google Scholar 

  13. J. Vergalli, E. Dumont, B. Cinquin, L. Maigre, J. Pajovic, E. Bacqué, M. Mourez, M. Réfrégiers, J.M. Pagès, Sci. Rep. 7, 9821 (2017)

    Article  ADS  Google Scholar 

  14. A. Allam, L. Maigre, J. Vergalli, E. Dumont, B. Cinquin, R. Alves de Sousa, J. Pajovic, E. Pinet, N. Smith, J.P. Herbeuval, M. Réfrégiers, I. Artaud, J.M. Pagès, Sci. Rep. 7, 986 (2017)

    Article  ADS  Google Scholar 

  15. J. Cama, H. Bajaj, S. Pagliara, T. Maier, Y. Braun, M. Winterhalter, U.F. Keyser, J. Am. Chem. Soc. 137, 13836 (2015)

    Article  Google Scholar 

  16. G. Ghale, A.G. Lanctot, H.T. Kreissl, M.H. Jacob, H. Weingart, M. Winterhalter, W.M. Nau, Angew. Chem. Int. Ed. 53, 2762 (2014)

    Article  Google Scholar 

  17. A. Norouzy, Z. Azizi, W.M. Nau, Angew. Chem. Int. Ed. 54, 792 (2015)

    Article  Google Scholar 

  18. Q. Yan, S.L. Schwartz, S. Maji, F. Huang, C. Szent-Gyorgyi, D.S. Lidke, K.A. Lidke, M.P. Bruchez, ChemPhysChem 15, 687 (2014)

    Article  Google Scholar 

  19. M. Luckey, H. Nikaido, Proc. Natl. Acad. Sci. U.S.A. 77, 167 (1980)

    Article  ADS  Google Scholar 

  20. H. Nikaido, W. Liu, E.Y. Rosenberg, Antimicrob. Agents Chemother. 34, 337 (1990)

    Article  Google Scholar 

  21. I. Ghai, M. Winterhalter, R. Wagner, Biochem. Biophys. Res. Commun. 484, 51 (2017)

    Article  Google Scholar 

  22. T. Gutsmann, T. Heimburg, U. Keyser, R.M. Kozhinjampara, M. Winterhalter, Nat. Protoc. 10, 188 (2015)

    Article  Google Scholar 

  23. L.Q. Gu, S. Cheley, H. Bayley, Proc. Natl. Acad. Sci. U.S.A. 100, 15498 (2003)

    Article  ADS  Google Scholar 

  24. F. Piguet, F. Discala, M.F. Breton, J. Pelta, L. Bacri, A. Oukhaled, J. Phys. Chem. Lett. 5, 4362 (2014)

    Article  Google Scholar 

  25. S.P. Bhamidimarri, J.D. Prajapati, B. van den Berg, M. Winterhalter, U. Kleinekathöfer, Biophys. J. 110, 600 (2016)

    Article  ADS  Google Scholar 

  26. I. Ghai, A. Pira, M. Scorciapino, I. Bodrenko, L. Benier, M. Ceccarelli, M. Winterhalter, R. Wagner, J. Phys. Chem. Lett. 8, 1295 (2017)

    Article  Google Scholar 

  27. G. Charbon, E. Brustad, K.A. Scott, J. Wang, A. Løbner-Olesen, P.G. Schultz, C. Jacobs-Wagner, E. Chapman, ChemBioChem 12, 1818 (2011)

    Article  Google Scholar 

  28. I.N. Ugwumba, K. Ozawa, L. de la Cruz, Z.Q. Xu, A.J. Herlt, K.S. Hadler, C. Coppin, S.E. Brown, G. Schenk, J.G. Oakeshott, G. Otting, Assay Drug Dev. Technol. 9, 50 (2011)

    Article  Google Scholar 

  29. J. Wang, J. Xie, P.G. Schultz, J. Am. Chem. Soc. 128, 8738 (2006)

    Article  Google Scholar 

  30. M. Amaro, J. Brezovsky, S. Kovacova, J. Sykora, D. Bednar, V. Nemec, V. Liskova, N.P. Kurumbang, K. Beerens, R. Chaloupkova, K. Paruch, M. Hof, J. Damborsky, J. Am. Chem. Soc. 137, 4988 (2015)

    Article  Google Scholar 

  31. S. Liu, P. Lv, D. Li, X. Guo, B. Zhang, M. Yu, D. Li, Y. Xiong, L. Zhang, C. Tian, Chem. Commun. 51, 15971 (2015)

    Article  Google Scholar 

  32. A. Prilipov, P.S. Phale, P. Van Gelder, J.P. Rosenbusch, R. Koebnik, FEMS Microbiol. Lett. 163, 65 (1998)

    Article  Google Scholar 

  33. T.S. Young, I. Ahmad, J.A. Yin, P.G. Schultz, J. Mol. Biol. 395, 361 (2010)

    Article  Google Scholar 

  34. M. Wulf, S.A. Pless, Cell. Rep. 22, 1615 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Winterhalter.

Additional information

In Memoriam Loïc Auvray. This short article is dedicated to our former colleague Loïc Auvray. Beyond his remarkable publications in the area of polymer physics, he established a unique network around nanopores. Loïc Auvray achieved to build a multidisciplinary team in Evry, France, and was the main promoter of an annual lecture series called “Biosensing with channels”, bringing international speakers together in an enthusiastic setting. His broad view and talent allowed him to connect different areas in science, what made these meetings scientifically interesting and enjoyable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terrasse, R., Winterhalter, M. Translocation of small molecules through engineered outer-membrane channels from Gram-negative bacteria. Eur. Phys. J. E 41, 111 (2018). https://doi.org/10.1140/epje/i2018-11721-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11721-9

Keywords

Navigation