Skip to main content
Log in

Dynamic and thermodynamic crossover scenarios in the Kob-Andersen mixture: Insights from multi-CPU and multi-GPU simulations

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The physical behavior of glass-forming liquids presents complex features of both dynamic and thermodynamic nature. Some studies indicate the presence of thermodynamic anomalies and of crossovers in the dynamic properties, but their origin and degree of universality is difficult to assess. Moreover, conventional simulations are barely able to cover the range of temperatures at which these crossovers usually occur. To address these issues, we simulate the Kob-Andersen Lennard-Jones mixture using efficient protocols based on multi-CPU and multi-GPU parallel tempering. Our setup enables us to probe the thermodynamics and dynamics of the liquid at equilibrium well below the critical temperature of the mode-coupling theory, \(T_{{\rm MCT}} = 0.435\). We find that below \(T=0.4\) the analysis is hampered by partial crystallization of the metastable liquid, which nucleates extended regions populated by large particles arranged in an fcc structure. By filtering out crystalline samples, we reveal that the specific heat grows in a regular manner down to \(T=0.38\) . Possible thermodynamic anomalies suggested by previous studies can thus occur only in a region of the phase diagram where the system is highly metastable. Using the equilibrium configurations obtained from the parallel tempering simulations, we perform molecular dynamics and Monte Carlo simulations to probe the equilibrium dynamics down to \(T=0.4\). A temperature-derivative analysis of the relaxation time and diffusion data allows us to assess different dynamic scenarios around \(T_{{\rm MCT}}\). Hints of a dynamic crossover come from analysis of the four-point dynamic susceptibility. Finally, we discuss possible future numerical strategies to clarify the nature of crossover phenomena in glass-forming liquids.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Angell et al., Science 267, 1924 (1995)

    Article  ADS  Google Scholar 

  2. K. Binder, W. Kob, Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics (World Scientific, 2011)

  3. L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)

    Article  ADS  Google Scholar 

  4. C.A. Angell, MRS Bull. 33, 544 (2008)

    Article  Google Scholar 

  5. P. Scheidler, W. Kob, A. Latz, J. Horbach, K. Binder, Phys. Rev. B 63, 104204 (2001)

    Article  ADS  Google Scholar 

  6. I. Saika-Voivod, F. Sciortino, P.H. Poole, Phys. Rev. E 69, 041503 (2004)

    Article  ADS  Google Scholar 

  7. S. Saito, I. Ohmine, B. Bagchi, J. Chem. Phys. 138, 094503 (2013)

    Article  ADS  Google Scholar 

  8. A.J. Moreno, S.V. Buldyrev, E. La Nave, I. Saika-Voivod, F. Sciortino, P. Tartaglia, E. Zaccarelli, Phys. Rev. Lett. 95, 157802 (2005)

    Article  ADS  Google Scholar 

  9. L. Xu, S.V. Buldyrev, N. Giovambattista, C.A. Angell, H.E. Stanley, J. Chem. Phys. 130, 054505 (2009)

    Article  ADS  Google Scholar 

  10. R. Gutiérrez, S. Karmakar, Y.G. Pollack, I. Procaccia, EPL 111, 56009 (2015)

    Article  ADS  Google Scholar 

  11. M. Ozawa, K. Kim, K. Miyazaki, J. Stat. Mech. Theory Exp. 2016, 074002 (2016)

    Article  Google Scholar 

  12. F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S.H. Chen, H.E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 107, 22457 (2010)

    Article  ADS  Google Scholar 

  13. C. Zhang, L. Hu, Y. Yue, J.C. Mauro, J. Chem. Phys. 133, 014508 (2010)

    Article  ADS  Google Scholar 

  14. C. Zhou, L. Hu, Q. Sun, H. Zheng, C. Zhang, Y. Yue, J. Chem. Phys. 142, 064508 (2015)

    Article  ADS  Google Scholar 

  15. K.N. Lad, N. Jakse, A. Pasturel, J. Chem. Phys. 136, 104509 (2012)

    Article  ADS  Google Scholar 

  16. S. Wei, F. Yang, J. Bednarcik, I. Kaban, O. Shuleshova, A. Meyer, R. Busch, Nat. Commun. 4, 2083 (2013)

    ADS  Google Scholar 

  17. M. Stolpe, I. Jonas, S. Wei, Z. Evenson, W. Hembree, F. Yang, A. Meyer, R. Busch, Phys. Rev. B 93, 014201 (2016)

    Article  ADS  Google Scholar 

  18. X. Yang, C. Zhou, Q. Sun, L. Hu, J.C. Mauro, C. Wang, Y. Yue, J. Phys. Chem. B 118, 10258 (2014)

    Article  Google Scholar 

  19. F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 102, 6251 (1995)

    Article  ADS  Google Scholar 

  20. J.C. Martinez-Garcia, J. Martinez-Garcia, S.J. Rzoska, J. Hulliger, J. Chem. Phys. 137, 064501 (2012)

    Article  ADS  Google Scholar 

  21. V.N. Novikov, A.P. Sokolov, Phys. Rev. E 92, 062304 (2015)

    Article  ADS  Google Scholar 

  22. Y.S. Elmatad, D. Chandler, J.P. Garrahan, J. Phys. Chem. B 113, 5563 (2009)

    Article  Google Scholar 

  23. R. Casalini, M. Paluch, C.M. Roland, J. Chem. Phys. 118, 5701 (2003)

    Article  ADS  Google Scholar 

  24. R. Casalini, C.M. Roland, Phys. Rev. Lett. 92, 245702 (2004)

    Article  ADS  Google Scholar 

  25. W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, 2008)

  26. W. Kob, S. Roldán-Vargas, L. Berthier, Nat. Phys. 8, 164 (2012)

    Article  Google Scholar 

  27. L. Berthier, G. Biroli, D. Coslovich, W. Kob, C. Toninelli, Phys. Rev. E 86, 031502 (2012)

    Article  ADS  Google Scholar 

  28. G. Biroli, J. Bouchaud, The random first order transition theory of glasses: A critical assessment, in Structural Glasses and Supercooled Liquids (Wiley-Blackwell, 2012) Chapt. 2, p. 31

  29. T. Rizzo, T. Voigtmann, EPL 111, 56008 (2015)

    Article  ADS  Google Scholar 

  30. T. Rizzo, Phys. Rev. B 94, 014202 (2016)

    Article  ADS  Google Scholar 

  31. W. Kob, H.C. Andersen, Phys. Rev. E 51, 4626 (1995)

    Article  ADS  Google Scholar 

  32. E. Flenner, G. Szamel, Phys. Rev. E 73, 061505 (2006)

    Article  ADS  Google Scholar 

  33. S.S. Ashwin, S. Sastry, J. Phys.: Condens. Matter 15, S1253 (2003)

    Google Scholar 

  34. B. Doliwa, A. Heuer, Phys. Rev. E 67, 031506 (2003)

    Article  ADS  Google Scholar 

  35. K. Hukushima, K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996)

    Article  ADS  Google Scholar 

  36. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  37. LAMMPS: Large-scale Atomic/Molecular Massively Parallel Simulator, http://lammps.sandia.gov/

  38. R. Yamamoto, W. Kob, Phys. Rev. E 61, 5473 (2000)

    Article  ADS  Google Scholar 

  39. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Vol. 1 (Academic Press, 2001)

  40. atooms-pt: Multi-core/multi-GPU parallel tempering, https://doi.org/10.5281/zenodo.1183663

  41. N. Bailey, J.S. Hansen, T. Ingebrigtsen, A. Veldhorst, L. Bohling, C. Lemarchand, A. Olsen, A. Bacher, L. Costigliola, U. Pedersen et al., SciPost Phys. 3, 038 (2017)

    Article  Google Scholar 

  42. atooms: A python framework for simulations of interacting particles, https://doi.org/10.5281/zenodo.1183301

  43. mpi4py, http://mpi4py.scipy.org/docs/

  44. L. Berthier, W. Kob, J. Phys.: Condens. Matter 19, 205130 (2007)

    ADS  Google Scholar 

  45. C. Donati, S. Franz, S.C. Glotzer, G. Parisi, J. Non-Cryst. Solids 307, 215 (2002)

    Article  ADS  Google Scholar 

  46. T. Kawasaki, H. Tanaka, Proc. Natl. Acad. Sci. U.S.A. 107, 14036 (2010)

    Article  ADS  Google Scholar 

  47. H. Tanaka, Eur. Phys. J. E 35, 113 (2012)

    Article  Google Scholar 

  48. S. Toxvaerd, U.R. Pedersen, T.B. Schroder, J.C. Dyre, J. Chem. Phys. 130, 224501 (2009)

    Article  ADS  Google Scholar 

  49. T.S. Ingebrigtsen, J.C. Dyre, T.B. Schroder, C.P. Royall, Crystallisation instability in glassforming mixtures, arXiv:1804.01378 (2018)

  50. F.H. Stillinger, T.A. Weber, Phys. Rev. A 25, 978 (1982)

    Article  ADS  Google Scholar 

  51. J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950 (1987)

    Article  Google Scholar 

  52. L.O. Hedges, R.L. Jack, J.P. Garrahan, D. Chandler, Science 323, 1309 (2009)

    Article  ADS  Google Scholar 

  53. M. Newman, Networks: An Introduction, 1st edition (Oxford University Press, Oxford, New York, 2010)

  54. G. Odriozola, L. Berthier, J. Chem. Phys. 134, 054504 (2011)

    Article  ADS  Google Scholar 

  55. Y. Rosenfeld, P. Tarazona, Mol. Phys. 95, 141 (1998)

    Article  ADS  Google Scholar 

  56. T.S. Ingebrigtsen, A.A. Veldhorst, T.B. Schroder, J.C. Dyre, J. Chem. Phys. 139, 171101 (2013)

    Article  ADS  Google Scholar 

  57. D. Coslovich, Phys. Rev. E 83, 051505 (2011)

    Article  ADS  Google Scholar 

  58. F. Turci, C.P. Royall, T. Speck, Phys. Rev. X 7, 031028 (2017)

    Google Scholar 

  59. W. Kob, D. Coslovich, Phys. Rev. E 90, 052305 (2014)

    Article  ADS  Google Scholar 

  60. S. Sastry, P.G. Debenedetti, F.H. Stillinger, Nature 393, 554 (1998)

    Article  ADS  Google Scholar 

  61. A. Hudson, K.K. Mandadapu, On the nature of the glass transition in atomistic models of glass formers, arXiv:1804.03769 (2018)

  62. V.N. Novikov, A.P. Sokolov, Phys. Rev. E 67, 031507 (2003)

    Article  ADS  Google Scholar 

  63. K. Kim, R. Yamamoto, Phys. Rev. E 61, R41 (2000)

    Article  ADS  Google Scholar 

  64. L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob, K. Miyazaki, D.R. Reichman, J. Chem. Phys. 126, 184504 (2007)

    Article  ADS  Google Scholar 

  65. E. Flenner, G. Szamel, J. Chem. Phys. 138, 12A523 (2013)

    Article  Google Scholar 

  66. S. Karmakar, C. Dasgupta, S. Sastry, Proc. Natl. Acad. Sci. U.S.A. 106, 3675 (2009)

    Article  ADS  Google Scholar 

  67. L. Berthier, G. Biroli, J.P. Bouchaud, W. Kob, K. Miyazaki, D.R. Reichman, J. Chem. Phys. 126, 184503 (2007)

    Article  ADS  Google Scholar 

  68. C.P. Royall, A. Malins, A.J. Dunleavy, R. Pinney, J. Non-Cryst. Solids 407, 34 (2015)

    Article  ADS  Google Scholar 

  69. J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006)

    Article  ADS  Google Scholar 

  70. S. Mirigian, K.S. Schweizer, J. Chem. Phys. 140, 194506 (2014)

    Article  ADS  Google Scholar 

  71. M.H. Cohen, G.S. Grest, Phys. Rev. B 20, 1077 (1979)

    Article  ADS  Google Scholar 

  72. Y.S. Elmatad, D. Chandler, J.P. Garrahan, J. Phys. Chem. B 114, 17113 (2010)

    Article  Google Scholar 

  73. D. Gazzillo, G. Pastore, Chem. Phys. Lett. 159, 388 (1989)

    Article  ADS  Google Scholar 

  74. P. Sindzingre, C. Massobrio, G. Ciccotti, D. Frenkel, Chem. Phys. 129, 213 (1989)

    Article  ADS  Google Scholar 

  75. T.S. Grigera, G. Parisi, Phys. Rev. E 63, 045102 (2001)

    Article  ADS  Google Scholar 

  76. A. Ninarello, L. Berthier, D. Coslovich, Phys. Rev. X 7, 021039 (2017)

    Google Scholar 

  77. L. Berthier, D. Coslovich, A. Ninarello, M. Ozawa, Phys. Rev. Lett. 116, 238002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Coslovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coslovich, D., Ozawa, M. & Kob, W. Dynamic and thermodynamic crossover scenarios in the Kob-Andersen mixture: Insights from multi-CPU and multi-GPU simulations. Eur. Phys. J. E 41, 62 (2018). https://doi.org/10.1140/epje/i2018-11671-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11671-2

Keywords

Navigation