Advertisement

Dynamic and thermodynamic crossover scenarios in the Kob-Andersen mixture: Insights from multi-CPU and multi-GPU simulations

  • Daniele Coslovich
  • Misaki Ozawa
  • Walter Kob
Regular Article
Part of the following topical collections:
  1. Advances in Computational Methods for Soft Matter Systems

Abstract.

The physical behavior of glass-forming liquids presents complex features of both dynamic and thermodynamic nature. Some studies indicate the presence of thermodynamic anomalies and of crossovers in the dynamic properties, but their origin and degree of universality is difficult to assess. Moreover, conventional simulations are barely able to cover the range of temperatures at which these crossovers usually occur. To address these issues, we simulate the Kob-Andersen Lennard-Jones mixture using efficient protocols based on multi-CPU and multi-GPU parallel tempering. Our setup enables us to probe the thermodynamics and dynamics of the liquid at equilibrium well below the critical temperature of the mode-coupling theory, \(T_{{\rm MCT}} = 0.435\). We find that below \(T=0.4\) the analysis is hampered by partial crystallization of the metastable liquid, which nucleates extended regions populated by large particles arranged in an fcc structure. By filtering out crystalline samples, we reveal that the specific heat grows in a regular manner down to \(T=0.38\) . Possible thermodynamic anomalies suggested by previous studies can thus occur only in a region of the phase diagram where the system is highly metastable. Using the equilibrium configurations obtained from the parallel tempering simulations, we perform molecular dynamics and Monte Carlo simulations to probe the equilibrium dynamics down to \(T=0.4\). A temperature-derivative analysis of the relaxation time and diffusion data allows us to assess different dynamic scenarios around \(T_{{\rm MCT}}\). Hints of a dynamic crossover come from analysis of the four-point dynamic susceptibility. Finally, we discuss possible future numerical strategies to clarify the nature of crossover phenomena in glass-forming liquids.

Graphical abstract

Keywords

Topical issue: Advances in Computational Methods for Soft Matter Systems 

References

  1. 1.
    C.A. Angell et al., Science 267, 1924 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    K. Binder, W. Kob, Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics (World Scientific, 2011)Google Scholar
  3. 3.
    L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    C.A. Angell, MRS Bull. 33, 544 (2008)CrossRefGoogle Scholar
  5. 5.
    P. Scheidler, W. Kob, A. Latz, J. Horbach, K. Binder, Phys. Rev. B 63, 104204 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    I. Saika-Voivod, F. Sciortino, P.H. Poole, Phys. Rev. E 69, 041503 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    S. Saito, I. Ohmine, B. Bagchi, J. Chem. Phys. 138, 094503 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    A.J. Moreno, S.V. Buldyrev, E. La Nave, I. Saika-Voivod, F. Sciortino, P. Tartaglia, E. Zaccarelli, Phys. Rev. Lett. 95, 157802 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    L. Xu, S.V. Buldyrev, N. Giovambattista, C.A. Angell, H.E. Stanley, J. Chem. Phys. 130, 054505 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    R. Gutiérrez, S. Karmakar, Y.G. Pollack, I. Procaccia, EPL 111, 56009 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    M. Ozawa, K. Kim, K. Miyazaki, J. Stat. Mech. Theory Exp. 2016, 074002 (2016)CrossRefGoogle Scholar
  12. 12.
    F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S.H. Chen, H.E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 107, 22457 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    C. Zhang, L. Hu, Y. Yue, J.C. Mauro, J. Chem. Phys. 133, 014508 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    C. Zhou, L. Hu, Q. Sun, H. Zheng, C. Zhang, Y. Yue, J. Chem. Phys. 142, 064508 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    K.N. Lad, N. Jakse, A. Pasturel, J. Chem. Phys. 136, 104509 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    S. Wei, F. Yang, J. Bednarcik, I. Kaban, O. Shuleshova, A. Meyer, R. Busch, Nat. Commun. 4, 2083 (2013)ADSGoogle Scholar
  17. 17.
    M. Stolpe, I. Jonas, S. Wei, Z. Evenson, W. Hembree, F. Yang, A. Meyer, R. Busch, Phys. Rev. B 93, 014201 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    X. Yang, C. Zhou, Q. Sun, L. Hu, J.C. Mauro, C. Wang, Y. Yue, J. Phys. Chem. B 118, 10258 (2014)CrossRefGoogle Scholar
  19. 19.
    F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 102, 6251 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    J.C. Martinez-Garcia, J. Martinez-Garcia, S.J. Rzoska, J. Hulliger, J. Chem. Phys. 137, 064501 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    V.N. Novikov, A.P. Sokolov, Phys. Rev. E 92, 062304 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Y.S. Elmatad, D. Chandler, J.P. Garrahan, J. Phys. Chem. B 113, 5563 (2009)CrossRefGoogle Scholar
  23. 23.
    R. Casalini, M. Paluch, C.M. Roland, J. Chem. Phys. 118, 5701 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    R. Casalini, C.M. Roland, Phys. Rev. Lett. 92, 245702 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, 2008)Google Scholar
  26. 26.
    W. Kob, S. Roldán-Vargas, L. Berthier, Nat. Phys. 8, 164 (2012)CrossRefGoogle Scholar
  27. 27.
    L. Berthier, G. Biroli, D. Coslovich, W. Kob, C. Toninelli, Phys. Rev. E 86, 031502 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    G. Biroli, J. Bouchaud, The random first order transition theory of glasses: A critical assessment, in Structural Glasses and Supercooled Liquids (Wiley-Blackwell, 2012) Chapt. 2, p. 31Google Scholar
  29. 29.
    T. Rizzo, T. Voigtmann, EPL 111, 56008 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    T. Rizzo, Phys. Rev. B 94, 014202 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    W. Kob, H.C. Andersen, Phys. Rev. E 51, 4626 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    E. Flenner, G. Szamel, Phys. Rev. E 73, 061505 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    S.S. Ashwin, S. Sastry, J. Phys.: Condens. Matter 15, S1253 (2003)Google Scholar
  34. 34.
    B. Doliwa, A. Heuer, Phys. Rev. E 67, 031506 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    K. Hukushima, K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    LAMMPS: Large-scale Atomic/Molecular Massively Parallel Simulator, http://lammps.sandia.gov/
  38. 38.
    R. Yamamoto, W. Kob, Phys. Rev. E 61, 5473 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Vol. 1 (Academic Press, 2001)Google Scholar
  40. 40.
    atooms-pt: Multi-core/multi-GPU parallel tempering,  https://doi.org/10.5281/zenodo.1183663
  41. 41.
    N. Bailey, J.S. Hansen, T. Ingebrigtsen, A. Veldhorst, L. Bohling, C. Lemarchand, A. Olsen, A. Bacher, L. Costigliola, U. Pedersen et al., SciPost Phys. 3, 038 (2017)CrossRefGoogle Scholar
  42. 42.
    atooms: A python framework for simulations of interacting particles,  https://doi.org/10.5281/zenodo.1183301
  43. 43.
  44. 44.
    L. Berthier, W. Kob, J. Phys.: Condens. Matter 19, 205130 (2007)ADSGoogle Scholar
  45. 45.
    C. Donati, S. Franz, S.C. Glotzer, G. Parisi, J. Non-Cryst. Solids 307, 215 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    T. Kawasaki, H. Tanaka, Proc. Natl. Acad. Sci. U.S.A. 107, 14036 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    H. Tanaka, Eur. Phys. J. E 35, 113 (2012)CrossRefGoogle Scholar
  48. 48.
    S. Toxvaerd, U.R. Pedersen, T.B. Schroder, J.C. Dyre, J. Chem. Phys. 130, 224501 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    T.S. Ingebrigtsen, J.C. Dyre, T.B. Schroder, C.P. Royall, Crystallisation instability in glassforming mixtures, arXiv:1804.01378 (2018)Google Scholar
  50. 50.
    F.H. Stillinger, T.A. Weber, Phys. Rev. A 25, 978 (1982)ADSCrossRefGoogle Scholar
  51. 51.
    J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950 (1987)CrossRefGoogle Scholar
  52. 52.
    L.O. Hedges, R.L. Jack, J.P. Garrahan, D. Chandler, Science 323, 1309 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    M. Newman, Networks: An Introduction, 1st edition (Oxford University Press, Oxford, New York, 2010)Google Scholar
  54. 54.
    G. Odriozola, L. Berthier, J. Chem. Phys. 134, 054504 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    Y. Rosenfeld, P. Tarazona, Mol. Phys. 95, 141 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    T.S. Ingebrigtsen, A.A. Veldhorst, T.B. Schroder, J.C. Dyre, J. Chem. Phys. 139, 171101 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    D. Coslovich, Phys. Rev. E 83, 051505 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    F. Turci, C.P. Royall, T. Speck, Phys. Rev. X 7, 031028 (2017)Google Scholar
  59. 59.
    W. Kob, D. Coslovich, Phys. Rev. E 90, 052305 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    S. Sastry, P.G. Debenedetti, F.H. Stillinger, Nature 393, 554 (1998)ADSCrossRefGoogle Scholar
  61. 61.
    A. Hudson, K.K. Mandadapu, On the nature of the glass transition in atomistic models of glass formers, arXiv:1804.03769 (2018)Google Scholar
  62. 62.
    V.N. Novikov, A.P. Sokolov, Phys. Rev. E 67, 031507 (2003)ADSCrossRefGoogle Scholar
  63. 63.
    K. Kim, R. Yamamoto, Phys. Rev. E 61, R41 (2000)ADSCrossRefGoogle Scholar
  64. 64.
    L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob, K. Miyazaki, D.R. Reichman, J. Chem. Phys. 126, 184504 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    E. Flenner, G. Szamel, J. Chem. Phys. 138, 12A523 (2013)CrossRefGoogle Scholar
  66. 66.
    S. Karmakar, C. Dasgupta, S. Sastry, Proc. Natl. Acad. Sci. U.S.A. 106, 3675 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    L. Berthier, G. Biroli, J.P. Bouchaud, W. Kob, K. Miyazaki, D.R. Reichman, J. Chem. Phys. 126, 184503 (2007)ADSCrossRefGoogle Scholar
  68. 68.
    C.P. Royall, A. Malins, A.J. Dunleavy, R. Pinney, J. Non-Cryst. Solids 407, 34 (2015)ADSCrossRefGoogle Scholar
  69. 69.
    J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006)ADSCrossRefGoogle Scholar
  70. 70.
    S. Mirigian, K.S. Schweizer, J. Chem. Phys. 140, 194506 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    M.H. Cohen, G.S. Grest, Phys. Rev. B 20, 1077 (1979)ADSCrossRefGoogle Scholar
  72. 72.
    Y.S. Elmatad, D. Chandler, J.P. Garrahan, J. Phys. Chem. B 114, 17113 (2010)CrossRefGoogle Scholar
  73. 73.
    D. Gazzillo, G. Pastore, Chem. Phys. Lett. 159, 388 (1989)ADSCrossRefGoogle Scholar
  74. 74.
    P. Sindzingre, C. Massobrio, G. Ciccotti, D. Frenkel, Chem. Phys. 129, 213 (1989)ADSCrossRefGoogle Scholar
  75. 75.
    T.S. Grigera, G. Parisi, Phys. Rev. E 63, 045102 (2001)ADSCrossRefGoogle Scholar
  76. 76.
    A. Ninarello, L. Berthier, D. Coslovich, Phys. Rev. X 7, 021039 (2017)Google Scholar
  77. 77.
    L. Berthier, D. Coslovich, A. Ninarello, M. Ozawa, Phys. Rev. Lett. 116, 238002 (2016)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Charles CoulombUniversité de Montpellier, CNRSMontpellierFrance

Personalised recommendations