Rheology of granular materials composed of crushable particles
Abstract.
We investigate sheared granular materials composed of crushable particles by means of contact dynamics simulations and the bonded-cell model for particle breakage. Each particle is paved by irregular cells interacting via cohesive forces. In each simulation, the ratio of the internal cohesion of particles to the confining pressure, the relative cohesion, is kept constant and the packing is subjected to biaxial shearing. The particles can break into two or more fragments when the internal cohesive forces are overcome by the action of compressive force chains between particles. The particle size distribution evolves during shear as the particles continue to break. We find that the breakage process is highly inhomogeneous both in the fragment sizes and their locations inside the packing. In particular, a number of large particles never break whereas a large number of particles are fully shattered. As a result, the packing keeps the memory of its initial particle size distribution, whereas a power-law distribution is observed for particles of intermediate size due to consecutive fragmentation events whereby the memory of the initial state is lost. Due to growing polydispersity, dense shear bands are formed inside the packings and the usual dilatant behavior is reduced or cancelled. Hence, the stress-strain curve no longer passes through a peak stress, and a progressive monotonic evolution towards a pseudo-steady state is observed instead. We find that the crushing rate is controlled by the confining pressure. We also show that the shear strength of the packing is well expressed in terms of contact anisotropies and force anisotropies. The force anisotropy increases while the contact orientation anisotropy declines for increasing internal cohesion of the particles. These two effects compensate each other so that the shear strength is nearly independent of the internal cohesion of particles.
Graphical abstract
Keywords
Flowing Matter: Granular MatterReferences
- 1.L. Elghezal, M. Jamei, I.-O. Georgopoulos, Granular Matter 15, 685 (2013)CrossRefGoogle Scholar
- 2.Yukio Nakata, Masayuki Hyodo, Adrian F.L. Hyde, Yoshinori Kato, Hidekazu Murata, Soils Found. 41, 69 (2001)CrossRefGoogle Scholar
- 3.Y.P. Cheng, Y. Nakata, M.D. Bolton, Géotechnique 53, 633 (2003)CrossRefGoogle Scholar
- 4.Y.P. Cheng, M.D. Bolton, Y. Nakata, Géotechnique 54, 131 (2004)CrossRefGoogle Scholar
- 5.D.W. Fuerstenau, O. Gutsche, P.C. Kapur, Confined particle bed comminution under compressive loads, in Comminution 1994, edited by K.S.E. Forssberg, K. Schnert (Elsevier, Amsterdam, 1996) pp. 521--537Google Scholar
- 6.C. Hosten, H. Cimilli, Int. J. Min. Process. 91, 81 (2009)CrossRefGoogle Scholar
- 7.Arghya Das, Giang D. Nguyen, Itai Einav, J. Geophys. Res.: Solid Earth 116, B08203 (2011)ADSGoogle Scholar
- 8.O. Ben-Nun, I. Einav, A. Tordesillas, Phys. Rev. Lett. 104, 108001 (2010)ADSCrossRefGoogle Scholar
- 9.V.P.B. Esnault, J.-N. Roux, Mech. Mater. 66, 88 (2013)CrossRefGoogle Scholar
- 10.Poul V. Lade, Jerry A. Yamamuro, Paul A. Bopp, J. Geotech. Eng. 122, 309 (1996)CrossRefGoogle Scholar
- 11.Fawad A. Chuhan, Arild Kjeldstad, Knut Bjørlykke, Kaare Høeg, Mar. Pet. Geol. 19, 39 (2002)CrossRefGoogle Scholar
- 12.N. Cho, C.D. Martin, D.C. Sego, Int. J. Rock Mech. Min. Sci. 45, 1335 (2008)CrossRefGoogle Scholar
- 13.Gang Ma, Wei Zhou, Xiao-Lin Chang, Comput. Geotech. 61, 132 (2014)CrossRefGoogle Scholar
- 14.M.R. Coop, K.K. Sorensen, T. Bodas Freitas, G. Georgoutsos, Géotechnique 54, 157 (2004)CrossRefGoogle Scholar
- 15.Charles Sammis, Geoffrey King, Ronald Biegel, Pure Appl. Geophys. 125, 777 (1987)ADSCrossRefGoogle Scholar
- 16.Luis E. Vallejo, Sebastian Lobo-Guerrero, Kevin Hammer, Int. J. Geomech. 6, 435 (2006)CrossRefGoogle Scholar
- 17.Junyu Huang, Songlin Xu, Shisheng Hu, Mech. Mater. 68, 15 (2014)CrossRefGoogle Scholar
- 18.K.H. Wohletz, M.F. Sheridan, W.K. Brown, J. Geophys. Res.: Solid Earth 94, 15703 (1989)CrossRefGoogle Scholar
- 19.Sidney Redner, Statistical theory of fragmentation, in Disorder and Fracture (Springer, 1990) pp. 31--48Google Scholar
- 20.J.A. Astrom, H.J. Herrmann, Eur. Phys. J. B 5, 551 (1998)ADSCrossRefGoogle Scholar
- 21.M. Gorokhovski, Fragmentation under the scaling symmetry and turbulent cascade with intermittency, Technical Report, DTIC Document, 2003Google Scholar
- 22.Itai Einav, J. Mech. Phys. Solids 55, 1274 (2007)ADSMathSciNetCrossRefGoogle Scholar
- 23.Predrag Elek, Slobodan Jaramaz, FME Trans. 37, 129 (2009)Google Scholar
- 24.N.R.A. Bird, C.W. Watts, A.M. Tarquis, A.P. Whitmore, Vadose Zone J. 8, 197 (2009)CrossRefGoogle Scholar
- 25.Ferenc Kun, Imre Varga, Sabine Lennartz-Sassinek, Ian G. Main, Phys. Rev. E 88, 062207 (2013)ADSCrossRefGoogle Scholar
- 26.Ferenc Kun, Imre Varga, Sabine Lennartz-Sassinek, Ian G. Main, Phys. Rev. Lett. 112, 065501 (2014)ADSCrossRefGoogle Scholar
- 27.Francesca Casini, Giulia M.B. Viggiani, Sarah M. Springman, Granular Matter 15, 661 (2013)CrossRefGoogle Scholar
- 28.Benjy Marks, Itai Einav, Geophys. Res. Lett. 42, 274 (2015)ADSCrossRefGoogle Scholar
- 29.Luis E. Vallejo, Sebastian Lobo-Guerrero, Zamri Chik, A network of fractal force chains and their effect in granular materials under compression, in Fractals in Engineering (Springer, 2005) pp. 67--80Google Scholar
- 30.F. Radjaï, M. Jean, J.-J. Moreau, S. Roux, Phys. Rev. Lett. 77, 274 (1996)ADSCrossRefGoogle Scholar
- 31.Olivier Tsoungui, Denis Vallet, Jean-Claude Charmet, Stphane Roux, C. R. Acad. Sci., Ser. IIB 325, 457 (1997)ADSGoogle Scholar
- 32.F. Radjaï, D.E. Wolf, M. Jean, J.J. Moreau, Phys. Rev. Lett. 80, 61 (1998)ADSCrossRefGoogle Scholar
- 33.C. Thornton, M.T. Ciomocos, M.J. Adams, Powder Technol. 140, 258 (2004)CrossRefGoogle Scholar
- 34.Ivana Agnolin, Jean-Noël Roux, Phys. Rev. E 76, 061302 (2007)ADSMathSciNetCrossRefGoogle Scholar
- 35.Vincent Richefeu, Moulay Saïd El Youssoufi, Farhang Radjai, Phys. Rev. E 73, 051304 (2006)ADSCrossRefGoogle Scholar
- 36.C. Voivret, F. Radjaï, J.-Y. Delenne, M.S. El Youssoufi, Phys. Rev. Lett. 102, 178001 (2009)ADSCrossRefGoogle Scholar
- 37.C. Thornton, K.K. Yin, M.J. Adams, J. Phys. D: Appl. Phys. 29, 424 (1996)ADSCrossRefGoogle Scholar
- 38.R. Moreno, M. Ghadiri, S.J. Antony, Powder Technol. 130, 132 (2003)CrossRefGoogle Scholar
- 39.L. Liu, K.D. Kafui, C. Thornton, Powder Technol. 199, 189 (2010)CrossRefGoogle Scholar
- 40.Wei Zhou, Lifu Yang, Gang Ma, Kun Xu, Zhiqiang Lai, Xiaolin Chang, Granular Matter 19, 25 (2017)CrossRefGoogle Scholar
- 41.Ming Xu, Juntian Hong, Erxiang Song, Comput. Geotech. 89, 113 (2017) (Supplement C)CrossRefGoogle Scholar
- 42.D.O. Potyondy, P.A. Cundall, Int. J. Rock Mech. Min. Sci. 41, 1329 (2004)CrossRefGoogle Scholar
- 43.N. Cho, C.D. Martin, D.C. Sego, Int. J. Rock Mech. Min. Sci. 44, 997 (2007)CrossRefGoogle Scholar
- 44.Manoj Khanal, Wolfgang Schubert, Jurgen Tomas, Miner. Eng. 20, 179 (2007)CrossRefGoogle Scholar
- 45.M.D. Bolton, Y. Nakata, Y.P. Cheng, Géotechnique 58, 471 (2008)CrossRefGoogle Scholar
- 46.Steffen Abe, Karen Mair, Geophys. Res. Lett. 36, L23302 (2009)ADSCrossRefGoogle Scholar
- 47.Jianfeng Wang, Haibin Yan, Soils Found. 52, 644 (2012)CrossRefGoogle Scholar
- 48.G. Timár, F. Kun, H.A. Carmona, H.J. Herrmann, Phys. Rev. E 86, 016113 (2012)ADSCrossRefGoogle Scholar
- 49.Matthew J. Metzger, Benjamin J. Glasser, Powder Technol. 217, 304 (2012)CrossRefGoogle Scholar
- 50.Takao Ueda, Takashi Matsushima, Yasuo Yamada, Granular Matter 15, 675 (2013)CrossRefGoogle Scholar
- 51.S.A. Galindo-Torres, D.M. Pedroso, D.J. Williams, L. Li, Comput. Phys. Commun. 183, 266 (2012)ADSCrossRefGoogle Scholar
- 52.Gang Ma, Wei Zhou, Richard A. Regueiro, Qiao Wang, Xiaolin Chang, Powder Technol. 308, 388 (2017)CrossRefGoogle Scholar
- 53.Ferenc Kun, Hans J. Herrmann, Comput. Methods Appl. Mech. Eng. 138, 3 (1996)CrossRefGoogle Scholar
- 54.Bart Van de Steen, André Vervoort, J.A.L. Napier, Int. J. Fract. 108, 165 (2001)CrossRefGoogle Scholar
- 55.G.A. D’Addetta, F. Kun, E. Ramm, Granular Matter 4, 77 (2002)CrossRefGoogle Scholar
- 56.S.A. Galindo-Torres, D.M. Pedroso, D.J. Williams, L. Li, Comput. Phys. Commun. 183, 266 (2012)ADSCrossRefGoogle Scholar
- 57.Duc-Hanh Nguyen, Emilien Azéma, Philippe Sornay, Farhang Radjai, Phys. Rev. E 91, 022203 (2015)ADSMathSciNetCrossRefGoogle Scholar
- 58.E. Azema, N. Estrada, F. Radjai, Phys. Rev. E 86, 041301 (2012)ADSCrossRefGoogle Scholar
- 59.J.J. Moreau, Eur. J. Mech. A Solids 13, 93 (1994)Google Scholar
- 60.M. Jean, Comput. Methods Appl. Mech. Eng. 177, 235 (1999)ADSCrossRefGoogle Scholar
- 61.Farhang Radjai, Vincent Richefeu, Mech. Mater. 41, 715 (2009)CrossRefGoogle Scholar
- 62.Farhang Radjaï, Frédéric Dubois, Discrete Numerical Modeling of Granular Materials (Wiley-ISTE, New-York, 2011) ISBN: 978-1-84821-260-2Google Scholar
- 63.L. Staron, J.-P. Vilotte, F. Radjaï, Phys. Rev. Lett. 89, 204302 (2002)ADSCrossRefGoogle Scholar
- 64.A. Taboada, K.J. Chang, F. Radjaï, F. Bouchette, J. Geophys. Res. 110, B09202 (2005)ADSCrossRefGoogle Scholar
- 65.M. Renouf, P. Alart, Comput. Methods Appl. Mech. Eng. 194, 2019 (2005)ADSCrossRefGoogle Scholar
- 66.E. Azéma, F. Radjaï, R. Peyroux, F. Dubois, G. Saussine, Phys. Rev. E 74, 031302 (2006)ADSCrossRefGoogle Scholar
- 67.E. Azéma, F. Radjaï, R. Peyroux, V. Richefeu, G. Saussine, Eur. Phys. J. E 26, 327 (2008)CrossRefGoogle Scholar
- 68.Nicolas Estrada, Alfredo Taboada, Farhang Radjaï, Phys. Rev. E 78, 021301 (2008)ADSCrossRefGoogle Scholar
- 69.E. Azéma, F. Radjaï, Phys. Rev. E 81, 051304 (2010)ADSCrossRefGoogle Scholar
- 70.E. Azéma, F. Radjaï, Phys. Rev. E 85, 031303 (2012)ADSCrossRefGoogle Scholar
- 71.N. Estrada, E. Azéma, F. Radjaï, A. Taboada, Phys. Rev. E 84, 011306 (2011)ADSCrossRefGoogle Scholar
- 72.B. Saint-Cyr, J.-Y. Delenne, C. Voivret, F. Radjai, P. Sornay, Phys. Rev. E 84, 041302 (2011)ADSCrossRefGoogle Scholar
- 73.Juan Carlos Quezada, Pierre Breul, Gilles Saussine, Farhang Radjai, Phys. Rev. E 86, 031308 (2012)ADSCrossRefGoogle Scholar
- 74.C. Voivret, F. Radjaï, J.-Y. Delenne, M.S. El Youssoufi, Phys. Rev. Lett. 102, 178001 (2009)ADSCrossRefGoogle Scholar
- 75.Dirk Kadau, Guido Bartels, Lothar Brendel, Dietrich E. Wolf, Comput. Phys. Commun. 147, 190 (2002)ADSCrossRefGoogle Scholar
- 76.Ivar Bratberg, Farhang Radjai, Alex Hansen, Phys. Rev. E 66, 031303 (2002)ADSCrossRefGoogle Scholar
- 77.Duc-Hanh Nguyen, Emilien Azéma, Farhang Radjai, Philippe Sornay, Phys. Rev. E 90, 012202 (2014)ADSCrossRefGoogle Scholar
- 78.Duc-Hanh Nguyen, Florian Fichot, Vincent Topin, Nucl. Eng. Des. 313, 96 (2017)CrossRefGoogle Scholar
- 79.Eric Clement, Curr. Opin. Colloid Interface Sci. 4, 294 (1999)CrossRefGoogle Scholar
- 80.GDR-MiDi, Eur. Phys. J. E 14, 341 (2004)CrossRefGoogle Scholar
- 81.J.J. Moreau, Numerical investigation of shear zones in granular materials, in Friction, Arching, Contact Dynamics, edited by D.E. Wolf, P. Grassberger (World Scientific, Singapore, 1997) pp. 233--247Google Scholar
- 82.L. Staron, F. Radjaï, Phys. Rev. E 72, 041308 (2005)ADSCrossRefGoogle Scholar
- 83.Da-Mang Lee, The angles of friction of granular fills, PhD Thesis, University of Cambridge, 1992Google Scholar
- 84.J.P. Bardet, J. Proubet, Géotechnique 41, 599 (1991)CrossRefGoogle Scholar
- 85.J.P. Bardet, J. Proubet, J. Eng. Mech. 118, 397 (1992)CrossRefGoogle Scholar
- 86.A.N.B. Poliakov, H.J. Herrmann, Geophys. Res. Lett. 21, 2143 (1994)ADSCrossRefGoogle Scholar
- 87.H.J. Herrmann, J.A. Astrom, R. Mahmoodi Baram, Physica A: Stat. Mech. Appl. 344, 516 (2004)ADSCrossRefGoogle Scholar
- 88.J. Desrues, G.S. Viggiani, Int. J. Numer. Anal. Methods Geomech. 28, 279 (2004)CrossRefGoogle Scholar
- 89.D.L. Turcotte, J. Geophys. Res.: Solid Earth 91, 1921 (1986)CrossRefGoogle Scholar
- 90.H.J. Herrmann, A.N.B. Poliakov, S. Roux, Fractals 3, 821 (1995)CrossRefGoogle Scholar
- 91.G.R. McDowell, M.D. Bolton, D. Robertson, J. Mech. Phys. Solids 44, 2079 (1996)ADSCrossRefGoogle Scholar
- 92.Tetsuo Akiyama, Keiko M. Aoki, Tatsusaburo Iguchi, Kazuo Nishimoto, Chem. Eng. Sci. 51, 3551 (1996)CrossRefGoogle Scholar
- 93.Leo Rothenburg, R.J. Bathurst, Géotechnique 39, 601 (1989)CrossRefGoogle Scholar
- 94.F. Radjaï, Multicontact dynamics, in Physics of Dry Granular Media, edited by H.J. Herrmann (Kluwer Academic Publishers, Netherlands, 1998) pp. 305--312Google Scholar
- 95.H. Ouadfel, L. Rothenburg, Mech. Mater. 33, 201 (2001)CrossRefGoogle Scholar
- 96.E. Azéma, F. Radjaï, R. Peyroux, G. Saussine, Phys. Rev. E 76, 011301 (2007)ADSCrossRefGoogle Scholar
- 97.E. Azema, F. Radjai, B. Saint-Cyr, J.-Y. Delenne, P. Sornay, Phys. Rev. E 87, 052205 (2013)ADSCrossRefGoogle Scholar
- 98.Duc-Hanh Nguyen, Emilien Azéma, Philippe Sornay, Farhang Radjai, Phys. Rev. E 91, 032203 (2015)ADSCrossRefGoogle Scholar
- 99.Farhang Radjai, Vincent Richefeu, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 367, 5123 (2009)ADSCrossRefGoogle Scholar