Advertisement

Hydrodynamic interaction of a self-propelling particle with a wall

Comparison between an active Janus particle and a squirmer model
  • Zaiyi Shen
  • Alois Würger
  • Juho S. Lintuvuori
Regular Article
Part of the following topical collections:
  1. Fluids and Structures: Multi-scale coupling and modeling

Abstract.

Using lattice Boltzmann simulations we study the hydrodynamics of an active spherical particle near a no-slip wall. We develop a computational model for an active Janus particle, by considering different and independent mobilities on the two hemispheres and compare the behaviour to a standard squirmer model. We show that the topology of the far-field hydrodynamic nature of the active Janus particle is similar to the standard squirmer model, but in the near-field the hydrodynamics differ. In order to study how the near-field effects affect the interaction between the particle and a flat wall, we compare the behaviour of a Janus swimmer and a squirmer near a no-slip surface via extensive numerical simulations. Our results show generally a good agreement between these two models, but they reveal some key differences especially with low magnitudes of the squirming parameter \(\beta\). Notably the affinity of the particles to be trapped at a surface is increased for the active Janus particles when compared to standard squirmers. Finally, we find that when the particle is trapped on the surface, the velocity parallel to the surface exceeds the bulk swimming speed and scales linearly with \(\vert\beta\vert\).

Graphical abstract

Keywords

Topical issue: Fluids and Structures: Multi-scale coupling and modeling 

References

  1. 1.
    A. Zöttl, H. Stark, J. Phys.: Condens. Matter 28, 253001 (2016)ADSGoogle Scholar
  2. 2.
    C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    M.J. Lighthill, Commun. Pure Appl. Math. 5, 109 (1952)CrossRefGoogle Scholar
  4. 4.
    V. Magar, T. Goto, T.J. Pedley, Q. J. Mech. Appl. Math. 56, 65 (2003)CrossRefGoogle Scholar
  5. 5.
    I. Llopis, I. Pagonabarraga, J. Non-Newtonian Fluid Mech. 165, 946 (2010)CrossRefGoogle Scholar
  6. 6.
    I. Pagonabarraga, I. Llopis, Soft Matter 9, 7174 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    K. Ishimoto, E.A. Gaffney, Phys. Rev. E 88, 062702 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    A. Zöttl, H. Stark, Phys. Rev. Lett. 112, 118101 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    G.-J. Li, A.M. Ardekani, Phys. Rev. E 90, 013010 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    J.S. Lintuvuori, A.T. Brown, K. Stratford, D. Marenduzzo, Soft Matter 12, 7959 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    J.S. Lintuvuori, A. Würger, K. Stratford, Phys. Rev. Lett. 119, 068001 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    A.T. Brown, I.D. Vladesdu, A. Dawson, T. Visser, J. Schwarz-Linek, J.S. Lintuvuori, W.C.K. Poon, Soft Matter 12, 131 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    S. Das, A. Garg, A.I. Campbell, J. Howse, A. Sen, D. Velegol, R. Golestanian, S.J. Ebbens, Nat. Commun. 6, 8999 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    J. Simmchen, J. Katuri, W.E. Uspal, M.N. Popescu, M. Tasinkevych, S. Sánchez, Nat. Commun. 7, 10598 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    A.T. Brown, W.C.K. Poon, Soft Matter 10, 4016 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Stephen J. Ebbens, Gavin A. Buxton, Alexander Alexeev, Alireza Sadeghi, Jonathan R. Howse, Soft Matter 8, 3077 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Benedikt Sabass, Udo Seifert, Phys. Rev. Lett. 105, 218103 (2010)CrossRefGoogle Scholar
  18. 18.
    Stephen Ebbens, Mei-Hsien Tu, Jonathan R. Howse, Ramin Golestanian, Phys. Rev. E 85, 020401 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Ebbens, D.A. Gregory, G. Dunderdale, J.R. Howse, Y. Ibrahim, T.B. Liverpool, R. Golestanian, EPL 106, 58003 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    X. Wang, M. In, C. Blanc, M. Nobili, A. Stocco, Soft Matter 12, 7376 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, C. Bechinger, Soft Matter 7, 8810 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe, C. Bechinger, J. Phys.: Condens. Matter 24, 284129 (2012)Google Scholar
  23. 23.
    B. Liebchen, D. Marenduzzo, M.E. Cates, Phys. Rev. Lett. 118, 268001 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    A. Scagliarini, I. Pagonabarraga, Non-equilibrium phases in suspensions of self-propelled colloidal particles controlled by phoretic mobility and hydrodynamics, arXiv:1605.03773 (2016)Google Scholar
  25. 25.
    I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Ivo Buttinoni, Julian Bialké, Felix Kümmel, Hartmut Löwen, Clemens Bechinger, Thomas Speck, Phys. Rev. Lett. 110, 238301 (2013)CrossRefGoogle Scholar
  28. 28.
    W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 434 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    A. Mozaffari, N. Sharifi-Mood, J. Koplik, C. Maldarelli, Phys. Fluids 28, 053107 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    T. Bickel, A. Majee, A. Würger, Phys. Rev. E 88, 012301 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    T. Bickel, G. Zecua, A. Würger, Phys. Rev. E 89, 050303(R) (2014)ADSCrossRefGoogle Scholar
  32. 32.
    A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    A.J.C. Ladd, J. Fluid Mech. 271, 311 (1994)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    H. Shum, E.A. Gaffney, Phys. Rev. E 91, 033012 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    D. Pimponi, M. Chinappi, P. Gualtieri, C.M. Casciola, J. Fluid Mech. 789, 514 (2016)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    John. L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)ADSCrossRefGoogle Scholar
  37. 37.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Martinus Nijhoff, The Hague (Netherlands), 1983)Google Scholar
  38. 38.
    S.E. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105 (2012)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    K. Schaar, A. Zöttl, H. Stark, Phys. Rev. Lett. 115, 038101 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zaiyi Shen
    • 1
  • Alois Würger
    • 1
  • Juho S. Lintuvuori
    • 1
  1. 1.Univ. Bordeaux, CNRS, LOMA, UMR 5798TalenceFrance

Personalised recommendations