Molecular dynamics simulations of inverse patchy colloids

  • Silvano Ferrari
  • Gerhard Kahl
  • Emanuela Bianchi
Open Access
Regular Article
Part of the following topical collections:
  1. Advances in Computational Methods for Soft Matter Systems


Inverse patchy colloids are patchy particles with differently charged surface regions. In this paper we focus on inverse patchy colloids with two different polar patches and an oppositely charged equatorial belt, and we describe a model and a reliable and efficient numerical algorithm that can be applied to investigate the properties of these particles in molecular dynamics simulations.

Graphical abstract


Topical issue: Advances in Computational Methods for Soft Matter Systems 



Open Access funding provided by University of Vienna.


  1. 1.
    A. Pawar, I. Kretzschmar, Macromol. Rapid Commun. 31, 150 (2010)CrossRefGoogle Scholar
  2. 2.
    E. Bianchi, R. Blaak, C.N. Likos, Phys. Chem. Chem. Phys. 13, 6397 (2011)CrossRefGoogle Scholar
  3. 3.
    E. Bianchi, G. Kahl, C.N. Likos, Soft Matter 7, 8313 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    C. Yigit, J. Heyda, M. Ballauff, J. Dzubiella, J. Chem. Phys. 143, 064905 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    P.D.J. van Oostrum, M. Hejazifar, C. Niedermayer, E. Reimhult, J. Phys.: Condens. Matter 27, 234105 (2015)ADSGoogle Scholar
  6. 6.
    J.M. Dempster, M.O. de la Cruz, ACS Nano 10, 5909 (2016)CrossRefGoogle Scholar
  7. 7.
    M.A. Blanco, V.K. Shen, J. Chem. Phys. 145, 155102 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    A.I. Abrikosov, B. Stenqvist, M. Lund, Soft Matter 13, 074902 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Sabapathy, R. Ann Mathews K, E. Mani, Phys. Chem. Chem. Phys. 19, 13122 (2017)CrossRefGoogle Scholar
  10. 10.
    E. Bianchi, P.D.J. van Oostrum, C.N. Likos, G. Kahl, Curr. Opin. Colloid Interface Sci. 30, 8 (2017)CrossRefGoogle Scholar
  11. 11.
    E. Bianchi, B. Capone, I. Coluzza, L. Rovigatti, P.D.J. van Oostrum, Phys. Chem. Chem. Phys. 19, 19847 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Stipsitz, E. Bianchi, G. Kahl, J. Chem. Phys. 142, 114905 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    E. Bianchi, C.N. Likos, G. Kahl, ACS Nano 7, 4657 (2013)CrossRefGoogle Scholar
  14. 14.
    E.G. Noya, I. Kolovos, G. Doppelbauer, G. Kahl, E. Bianchi, Soft Matter 10, 8464 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    S. Ferrari, E. Bianchi, Y. Kalyuzhnyi, G. Kahl, J. Phys.: Condens. Matter 27, 234104 (2015)ADSGoogle Scholar
  16. 16.
    S. Ferrari, E. Bianchi, G. Kahl, Nanoscale 9, 1956 (2017)CrossRefGoogle Scholar
  17. 17.
    G. Ciccotti, M. Ferrario, J.P. Rickaert, Mol. Phys. 47, 1253 (1982)ADSCrossRefGoogle Scholar
  18. 18.
    W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, J. Chem. Phys. 76, 637 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    H.C. Andersen, J. Comput. Phys. 47, 1253 (1982)Google Scholar
  20. 20.
    L. Angelani, G. Foffi, F. Sciortino, P. Tartaglia, J. Phys.: Condens. Matter 17, L113 (2005)ADSGoogle Scholar
  21. 21.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, second edition (Oxford University Press, 2017). Google Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Silvano Ferrari
    • 1
  • Gerhard Kahl
    • 1
  • Emanuela Bianchi
    • 1
    • 2
  1. 1.Institut für Theoretische PhysikTU Wien and Center for Computational Materials Science (CMS)WienAustria
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations