On the calculation of the potential of mean force between atomistic nanoparticles

  • Gianmarco Munaò
  • Andrea Correa
  • Antonio Pizzirusso
  • Giuseppe Milano
Regular Article
Part of the following topical collections:
  1. Advances in Computational Methods for Soft Matter Systems

Abstract.

We study the potential of mean force (PMF) between atomistic silica and gold nanoparticles in the vacuum by using molecular dynamics simulations. Such an investigation is devised in order to fully characterize the effective interactions between atomistic nanoparticles, a crucial step to describe the PMF in high-density coarse-grained polymer nanocomposites. In our study, we first investigate the behavior of silica nanoparticles, considering cases corresponding to different particle sizes and assessing results against an analytic theory developed by Hamaker for a system of Lennard-Jones interacting particles (H.C. Hamaker, Physica A 4, 1058 (1937)). Once validated the procedure, we calculate effective interactions between gold nanoparticles, which are considered both bare and coated with polyethylene chains, in order to investigate the effects of the grafting density \(\rho_{g}\) on the PMF. Upon performing atomistic molecular dynamics simulations, it turns out that silica nanoparticles experience similar interactions regardless of the particle size, the most remarkable difference being a peak in the PMF due to surface interactions, clearly apparent for the larger size. As for bare gold nanoparticles, they are slightly interacting, the strength of the effective force increasing for the coated cases. The profile of the resulting PMF resembles a Lennard-Jones potential for intermediate \(\rho_{g}\), becoming progressively more repulsive for high \(\rho_{g}\) and low interparticle separations.

Graphical abstract

Keywords

Topical issue: Advances in Computational Methods for Soft Matter Systems 

References

  1. 1.
    P. Akcora, H. Liu, S.K. Kumar, J. Moll, Y. Li, B.C. Benicewicz, L.S. Schadler, D. Acechin, A.Z. Panagiotopoulos, V. Pyramitsyn, V. Ganesan, J. Ilavsky, P. Thiyagarajan, R.H. Colby, J.F. Douglas, Nat. Mater. 8, 354 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    S. Kawada, K. Fujimoto, N. Yoshii, S. Okazaki, J. Chem. Phys. 147, 084903 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    L. Baran, S. Sokolowski, J. Chem. Phys. 147, 044903 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    D.C. Gary, A, Petrone, X. Li, B.M. Cossairt, Chem. Commun. 53, 161 (2017)CrossRefGoogle Scholar
  5. 5.
    P. Akcora, S.K. Kumar, J. Moll, S. Lewis, L.S. Schadler, Y. Li, B.C. Benicewicz, A. Sandy, S. Narayanan, J. Ilavsky, P. Thiyagarajan, R.H. Colby, J.F. Douglas, Macromolecules 43, 1003 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Han, A. Fina, Prog. Polym. Sci. 36, 914 (2011)CrossRefGoogle Scholar
  7. 7.
    J. Kim, H. Yang, P.F. Green, Langmuir 28, 9735 (2012)CrossRefGoogle Scholar
  8. 8.
    I. Borukhov, L. Leibler, Macromolecules 35, 5171 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    S.K. Kumar, N. Jouault, B. Benicewicz, T. Neely, Macromolecules 46, 3199 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    C. Chevigny, F. Dalmas, E. Di Cola, D. Gigmes, D. Bertin, F. Boue, J. Jestin, Macromolecules 44, 122 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    W. You, W. Yu, C. Zhou, Soft Matter 13, 4088 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    T.B. Martin, P.M. Dodd, A. Jayaraman, Phys. Rev. Lett. 110, 018301 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    A.L. Frischknecht, A. Yethiraj, J. Chem. Phys. 134, 174901 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    D. Meng, S.K. Kumar, J.M.D. Lane, G.S. Grest, Soft Matter 8, 5002 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    A. Karatrantos, R.J. Composto, K.I. Winey, N. Clarke, J. Chem. Phys. 146, 203331 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    K.S. Schweizer, J.G. Curro, Phys. Rev. Lett. 58, 246 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    J.G. Curro, K.S. Schweizer, Macromolecules 20, 1928 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    J.B. Hooper, K.S. Schweizer, T.G. Desai, R. Koshy, P. Keblinski, J. Chem. Phys. 121, 6986 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    A. Jayaraman, K.S. Schweizer, Macromolecules 42, 8423 (2009)CrossRefGoogle Scholar
  20. 20.
    G. Allegra, G. Raos, M. Vacatello, Prog. Polym. Sci. 33, 683 (2008)CrossRefGoogle Scholar
  21. 21.
    V. Ganesan, A. Jayaraman, Soft Matter 10, 13 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    A. Karatrantos, N. Clarke, M. Kröger, Polym. Rev. 56, 385 (2016)CrossRefGoogle Scholar
  23. 23.
    S.K. Kumar, V. Ganesan, R.A. Riggleman, J. Chem. Phys. 147, 020901 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    J.J. Cerdà, T. Sintes, R. Toral, Macromolecules 36, 1407 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    J.S. Smith, D. Bedrov, G.D. Smith, Compos. Sci. Technol. 63, 1599 (2003)CrossRefGoogle Scholar
  26. 26.
    K.T. Marla, J.C. Meredith, J. Chem. Theory Comput. 2, 1624 (2006)CrossRefGoogle Scholar
  27. 27.
    G.D. Smith, D. Bedrov, Langmuir 25, 11239 (2009)CrossRefGoogle Scholar
  28. 28.
    F. Lo Verso, L. Yelash, S.A. Egorov, K. Binder, J. Chem. Phys. 135, 214902 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    G. Milano, T. Kawakatsu, J. Chem. Phys. 130, 214106 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    G. Milano, T. Kawakatsu, J. Chem. Phys. 133, 214102 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    B. Hess, C. Kutzner, D. Van del Spoel, E. Lindahl, J. Chem. Theor. Comput. 4, 435 (2008)CrossRefGoogle Scholar
  32. 32.
    H.C. Hamaker, Physica 4, 1058 (1937)ADSCrossRefGoogle Scholar
  33. 33.
    T.V.M. Ndoro, E. Voyiatzis, A. Ghanbari, D.N. Theodorou, M.C. Böhm, F. Müller-Plathe, Macromolecules 44, 2316 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    H. Eslami, M. Rahimi, F. Müller-Plathe, Macromolecules 46, 8680 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    B. Rai, P. Sathish, C.P. Malhotra, Pradip, K.G. Ayappa, Langmuir 20, 3138 (2004)CrossRefGoogle Scholar
  36. 36.
    G. Milano, G. Santangelo, F. Ragone, L. Cavallo, A. Di Matteo, J. Phys. Chem. C 115, 15154 (2011)CrossRefGoogle Scholar
  37. 37.
    I.G. Tironi, R. Sperb, P.E. Smith, W.F. van Gunsteren, J. Chem. Phys. 102, 5451 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    J.G. Kirkwood, J. Chem. Phys. 3, 300 (1935)ADSCrossRefGoogle Scholar
  39. 39.
    A. De Nicola, A. Correa, G. Milano, P. La Manna, P. Musto, G. Mensitieri, G. Scherillo, J. Phys. Chem. B 121, 3162 (2017)CrossRefGoogle Scholar
  40. 40.
    H.J.C. Berendsen, J.P.M. Postma, W.F.V. Gunsteren, A. Di Nola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)ADSCrossRefGoogle Scholar
  41. 41.
    L. Martinez, R. Andrade, E.G. Birgin, J.M. Martinez, J. Comput. Chem. 30, 2157 (2009)CrossRefGoogle Scholar
  42. 42.
    R. Everaers, M.R. Ejtehadi, Phys. Rev. E 67, 041710 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    A. De Nicola, R. Avolio, F. Della Monica, G. Gentile, M. Cocca, C. Capacchione, M.E. Errico, G. Milano, RSC Adv. 5, 71336 (2015)CrossRefGoogle Scholar
  44. 44.
    G. Ponti et al., Proceedings of the 2014 International Conference on High Performance Computing & Simulation, Bologna, 2014 (IEEE, 2014) p. 1030, doi:10.1109/HPCSim.2014.6903807Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gianmarco Munaò
    • 1
  • Andrea Correa
    • 2
  • Antonio Pizzirusso
    • 1
  • Giuseppe Milano
    • 1
    • 3
  1. 1.Dipartimento di Chimica e BiologiaUniversità di SalernoFisciano (SA)Italy
  2. 2.Department of Chemical ScienceFederico II University of NaplesNapoliItaly
  3. 3.Department of Organic Materials ScienceUniversity of YamagataYamagata-kenJapan

Personalised recommendations