Taylor-Green vortex simulation using CABARET scheme in a weakly compressible formulation
Regular Article
First Online:
Received:
Accepted:
- 12 Downloads
Part of the following topical collections:
Abstract.
In present paper we recall the canonical Taylor-Green vortex problem solved by in-house implementation of the novel CABARET numerical scheme in weakly compressible formulation. The simulations were carried out on the sequence of refined grids with \( 64^3\), \( 128^3\), \( 256^3\) cells at various Reynolds numbers corresponding to both laminar (\({\rm Re}=100, 280\)) and turbulent (\({\rm Re}=1600, 4000\)) vortex decay scenarios. The features of the numerical method are discussed in terms of the kinetic energy dissipation rate and integral enstrophy curves, temporal evolution of the spanwise vorticity, energy spectra and spatial correlation functions.
Graphical abstract
Keywords
Topical issue: Non-equilibrium processes in multicomponent and multiphase mediaReferences
- 1.G.I. Taylor, A.E. Green, Proc. R. Soc. London, Ser. A 158, 499 (1937)ADSCrossRefGoogle Scholar
- 2.S. Goldstein, Lond. Edinb. Dublin. Philos. Mag. 30, 85 (1940)CrossRefGoogle Scholar
- 3.M. Brachet, D. Meiron, S. Orszag, B. Nickel, R. Morf, U. Frisch, J. Fluid Mech. 130, 411 (1983)ADSCrossRefGoogle Scholar
- 4.S. Orszag, Numerical simulation of the Taylor-Green vortex (Springer Berlin Heidelberg, Berlin, Heidelberg, 1974) pp. 50--64Google Scholar
- 5.L. Berselli, J. Math. Fluid Mech. 7, S164 (2005)MathSciNetCrossRefGoogle Scholar
- 6.D. Drikakis, C. Fureby, F.F. Grinstein, D. Youngs, J. Turbul. 8, N20 (2007) DOI: https://doi.org/10.1080/14685240701250289 ADSCrossRefGoogle Scholar
- 7.E.V. Koromyslov, M.V. Usanin, L.Y. Gomzikov, A.A. Siner, Comput. Contin. Mech. 8, 24 (2015) (Utilization of high order DRP-type schemes and large eddy simulation based on relaxation filtering for turbulent gas flow computations in the case of Taylor-Green vortex breakdownCrossRefGoogle Scholar
- 8.V. Goloviznin, S. Karabasov, T. Kozubskaya, N. Maksimov, Comput. Math. Math. Phys. 49, 2168 (2009)MathSciNetCrossRefGoogle Scholar
- 9.C. Tam, J. Webb, J. Comput. Phys. 107, 262 (1993)ADSMathSciNetCrossRefGoogle Scholar
- 10.N. Taguelmimt, L. Danaila, A. Hadjadj, Flow Turbul. Combust. 96, 163 (2016)CrossRefGoogle Scholar
- 11.L.G. Margolin, W.J. Rider, F.F. Grinstein, J. Turbul. 7, N15 (2006)ADSCrossRefGoogle Scholar
- 12.I. Shirokov, T. Elizarova, J. Turbul. 15, 707 (2014)ADSMathSciNetCrossRefGoogle Scholar
- 13.Y. Kulikov, E. Son, J. Phys.: Conf. Ser. 774, 012094 (2016)Google Scholar
- 14.Y. Kulikov, E. Son, Comput. Res. Model. 9, 881 (2017) DOI: https://doi.org/10.20537/2076-7633-2017-9-6-881-903 CrossRefGoogle Scholar
- 15.Y. Kulikov, E. Son, J. Phys.: Conf. Ser. 946, 012075 (2017)Google Scholar
- 16.Y. Kulikov, E. Son, Thermophys. Aeromech. 24, 909 (2017)CrossRefGoogle Scholar
- 17.V. Goloviznin, A. Samarskii, Matem. Mod. 10, 86 (1998)Google Scholar
- 18.V. Goloviznin, A. Samarskii, Matem. Mod. 10, 101 (1998)Google Scholar
- 19.A. Iserles, IMA J. Numer. Anal. 6, 381 (1986)MathSciNetCrossRefGoogle Scholar
- 20.V. Goloviznin, S. Karabasov, I. Kobrinskiy, Math. Models Comput. Simul. 15, 29 (2003)Google Scholar
- 21.V. Goloviznin, Matem. Mod. 18, 14 (2006)Google Scholar
- 22.M. Ivanov, A. Kiverin, S. Pinevich, I. Yakovenko, J. Phys.: Conf. Ser. 754, 102003 (2016)Google Scholar
- 23.V. Ostapenko, Matem. Mod. 21, 29 (2009)Google Scholar
- 24.V. Ostapenko, Comput. Math. Math. Phys. 52, 387 (2012)MathSciNetCrossRefGoogle Scholar
- 25.S. Karabasov, V. Goloviznin, AIAA J. 45, 2801 (2007)CrossRefGoogle Scholar
- 26.V. Semiletov, S. Karabasov, J. Comput. Phys. 253, 157 (2013)ADSMathSciNetCrossRefGoogle Scholar
- 27.A.V. Danilin, A.V. Solovjev, A.M. Zaitsev, Numer. Methods Program. 18, 1 (2017) (A modification of the CABARET scheme for numerical simulation of one-dimensional detonation flows using a one-stage irreversible model of chemical kineticsGoogle Scholar
- 28.S. Karabasov, P. Berloff, V. Goloviznin, Ocean Model. 30, 155 (2009)ADSCrossRefGoogle Scholar
- 29.V. Glotov, V. Goloviznin, Math. Models Comput. Simul. 4, 144 (2012)MathSciNetCrossRefGoogle Scholar
- 30.V. Glotov, V. Goloviznin, Comput. Math. Math. Phys. 53, 721 (2013)MathSciNetCrossRefGoogle Scholar
- 31.O. Kovyrkina, V. Ostapenko, Math. Models Comput. Simul. 5, 180 (2013)MathSciNetCrossRefGoogle Scholar
- 32.O. Kovyrkina, V. Ostapenko, Dokl. Math. 91, 323 (2015)MathSciNetCrossRefGoogle Scholar
- 33.V. Goloviznin, M. Zaytsev, S. Karabasov, I. Korotkin, Novel Algorithms of Computational Hydrodynamics for Multicore Computing (Moscow University Press, 2013)Google Scholar
- 34.J. DeBonis, Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods, in Aerospace Sciences Meetings (American Institute of Aeronautics and Astronautics, 2013) p. 0382Google Scholar
- 35.M. Brachet, Fluid Dyn. Res. 8, 1 (1991)ADSCrossRefGoogle Scholar
- 36.K. Hillewaert, Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600, in 2nd International Workshop on High-Order CFD Methods (Sponsored by DLR, AIAA and AFOSR, 2013)Google Scholar
- 37.U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, 1995)Google Scholar
- 38.S. Jammy, C. Jacobs, N. Sandham, Enstrophy and kinetic energy data from 3D Taylor-Green vortex simulations https://eprints.soton.ac.uk/401892/ (2016)
- 39.M. Lesieur, S. Ossia, J. Turbul. 1, N7 (2000)ADSCrossRefGoogle Scholar
- 40.L. Skrbek, S. Stalp, Phys. Fluids 12, 1997 (2000)ADSCrossRefGoogle Scholar
- 41.R. Stepanov, F. Plunian, M. Kessar, G. Balarac, Phys. Rev. E 90, 053309 (2014)ADSCrossRefGoogle Scholar
- 42.P. Davidson, Turbulence: An Introduction for Scientists and Engineers (OUP Oxford, 2004)Google Scholar
- 43.P.L. O’Neill, D. Nicolaides, D. Honnery, J. Soria, Autocorrelation Functions and the Determination of Integral Length with Reference to Experimental and Numerical Data, in Proceedings of 15th Australasian Fluid Mechanics Conference, 13--17 December 2004, The University of Sydney, edited by M. Behnia, W. Lin, G. D. McBain (The University of Sydney, Sydney NSW, Australia, 2006) ISBN: 1-864-87695-6 (CD-ROM)Google Scholar
Copyright information
© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018