Taylor-Green vortex simulation using CABARET scheme in a weakly compressible formulation

Regular Article
  • 12 Downloads
Part of the following topical collections:
  1. Non-equilibrium processes in multicomponent and multiphase media

Abstract.

In present paper we recall the canonical Taylor-Green vortex problem solved by in-house implementation of the novel CABARET numerical scheme in weakly compressible formulation. The simulations were carried out on the sequence of refined grids with \( 64^3\), \( 128^3\), \( 256^3\) cells at various Reynolds numbers corresponding to both laminar (\({\rm Re}=100, 280\)) and turbulent (\({\rm Re}=1600, 4000\)) vortex decay scenarios. The features of the numerical method are discussed in terms of the kinetic energy dissipation rate and integral enstrophy curves, temporal evolution of the spanwise vorticity, energy spectra and spatial correlation functions.

Graphical abstract

Keywords

Topical issue: Non-equilibrium processes in multicomponent and multiphase media 

References

  1. 1.
    G.I. Taylor, A.E. Green, Proc. R. Soc. London, Ser. A 158, 499 (1937)ADSCrossRefGoogle Scholar
  2. 2.
    S. Goldstein, Lond. Edinb. Dublin. Philos. Mag. 30, 85 (1940)CrossRefGoogle Scholar
  3. 3.
    M. Brachet, D. Meiron, S. Orszag, B. Nickel, R. Morf, U. Frisch, J. Fluid Mech. 130, 411 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    S. Orszag, Numerical simulation of the Taylor-Green vortex (Springer Berlin Heidelberg, Berlin, Heidelberg, 1974) pp. 50--64Google Scholar
  5. 5.
    L. Berselli, J. Math. Fluid Mech. 7, S164 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    D. Drikakis, C. Fureby, F.F. Grinstein, D. Youngs, J. Turbul. 8, N20 (2007) DOI:  https://doi.org/10.1080/14685240701250289 ADSCrossRefGoogle Scholar
  7. 7.
    E.V. Koromyslov, M.V. Usanin, L.Y. Gomzikov, A.A. Siner, Comput. Contin. Mech. 8, 24 (2015) (Utilization of high order DRP-type schemes and large eddy simulation based on relaxation filtering for turbulent gas flow computations in the case of Taylor-Green vortex breakdownCrossRefGoogle Scholar
  8. 8.
    V. Goloviznin, S. Karabasov, T. Kozubskaya, N. Maksimov, Comput. Math. Math. Phys. 49, 2168 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Tam, J. Webb, J. Comput. Phys. 107, 262 (1993)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    N. Taguelmimt, L. Danaila, A. Hadjadj, Flow Turbul. Combust. 96, 163 (2016)CrossRefGoogle Scholar
  11. 11.
    L.G. Margolin, W.J. Rider, F.F. Grinstein, J. Turbul. 7, N15 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    I. Shirokov, T. Elizarova, J. Turbul. 15, 707 (2014)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Y. Kulikov, E. Son, J. Phys.: Conf. Ser. 774, 012094 (2016)Google Scholar
  14. 14.
    Y. Kulikov, E. Son, Comput. Res. Model. 9, 881 (2017) DOI:  https://doi.org/10.20537/2076-7633-2017-9-6-881-903 CrossRefGoogle Scholar
  15. 15.
    Y. Kulikov, E. Son, J. Phys.: Conf. Ser. 946, 012075 (2017)Google Scholar
  16. 16.
    Y. Kulikov, E. Son, Thermophys. Aeromech. 24, 909 (2017)CrossRefGoogle Scholar
  17. 17.
    V. Goloviznin, A. Samarskii, Matem. Mod. 10, 86 (1998)Google Scholar
  18. 18.
    V. Goloviznin, A. Samarskii, Matem. Mod. 10, 101 (1998)Google Scholar
  19. 19.
    A. Iserles, IMA J. Numer. Anal. 6, 381 (1986)MathSciNetCrossRefGoogle Scholar
  20. 20.
    V. Goloviznin, S. Karabasov, I. Kobrinskiy, Math. Models Comput. Simul. 15, 29 (2003)Google Scholar
  21. 21.
    V. Goloviznin, Matem. Mod. 18, 14 (2006)Google Scholar
  22. 22.
    M. Ivanov, A. Kiverin, S. Pinevich, I. Yakovenko, J. Phys.: Conf. Ser. 754, 102003 (2016)Google Scholar
  23. 23.
    V. Ostapenko, Matem. Mod. 21, 29 (2009)Google Scholar
  24. 24.
    V. Ostapenko, Comput. Math. Math. Phys. 52, 387 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Karabasov, V. Goloviznin, AIAA J. 45, 2801 (2007)CrossRefGoogle Scholar
  26. 26.
    V. Semiletov, S. Karabasov, J. Comput. Phys. 253, 157 (2013)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    A.V. Danilin, A.V. Solovjev, A.M. Zaitsev, Numer. Methods Program. 18, 1 (2017) (A modification of the CABARET scheme for numerical simulation of one-dimensional detonation flows using a one-stage irreversible model of chemical kineticsGoogle Scholar
  28. 28.
    S. Karabasov, P. Berloff, V. Goloviznin, Ocean Model. 30, 155 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    V. Glotov, V. Goloviznin, Math. Models Comput. Simul. 4, 144 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    V. Glotov, V. Goloviznin, Comput. Math. Math. Phys. 53, 721 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    O. Kovyrkina, V. Ostapenko, Math. Models Comput. Simul. 5, 180 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    O. Kovyrkina, V. Ostapenko, Dokl. Math. 91, 323 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    V. Goloviznin, M. Zaytsev, S. Karabasov, I. Korotkin, Novel Algorithms of Computational Hydrodynamics for Multicore Computing (Moscow University Press, 2013)Google Scholar
  34. 34.
    J. DeBonis, Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods, in Aerospace Sciences Meetings (American Institute of Aeronautics and Astronautics, 2013) p. 0382Google Scholar
  35. 35.
    M. Brachet, Fluid Dyn. Res. 8, 1 (1991)ADSCrossRefGoogle Scholar
  36. 36.
    K. Hillewaert, Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600, in 2nd International Workshop on High-Order CFD Methods (Sponsored by DLR, AIAA and AFOSR, 2013)Google Scholar
  37. 37.
    U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, 1995)Google Scholar
  38. 38.
    S. Jammy, C. Jacobs, N. Sandham, Enstrophy and kinetic energy data from 3D Taylor-Green vortex simulations https://eprints.soton.ac.uk/401892/ (2016)
  39. 39.
    M. Lesieur, S. Ossia, J. Turbul. 1, N7 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    L. Skrbek, S. Stalp, Phys. Fluids 12, 1997 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    R. Stepanov, F. Plunian, M. Kessar, G. Balarac, Phys. Rev. E 90, 053309 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    P. Davidson, Turbulence: An Introduction for Scientists and Engineers (OUP Oxford, 2004)Google Scholar
  43. 43.
    P.L. O’Neill, D. Nicolaides, D. Honnery, J. Soria, Autocorrelation Functions and the Determination of Integral Length with Reference to Experimental and Numerical Data, in Proceedings of 15th Australasian Fluid Mechanics Conference, 13--17 December 2004, The University of Sydney, edited by M. Behnia, W. Lin, G. D. McBain (The University of Sydney, Sydney NSW, Australia, 2006) ISBN: 1-864-87695-6 (CD-ROM)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Joint Institute for High Temperatures of RASMoscowRussia

Personalised recommendations