Self-assembly of magnetically functionalized star-polymer nano-colloids

  • Ronald Blaak
  • Christos N. Likos
Open Access
Regular Article


We explore the potential of star-polymers that carry super-paramagnetic nano-particles as end-groups with respect to the single-molecule self-assembly process. With the aid of molecular dynamics simulation, the configurations of these macromolecules are analyzed as a function of functionality, magnetic interaction strength, and the length of the polymeric arms. By means of an external magnetic field the nano-particles can be controlled to form static or dynamic dipolar chains, resulting in conformations of isolated stars that can be characterized by the average number of chains and length. The single-molecule conformation diagram in the plane of magnetic interaction strength vs. the star-functionality is obtained. Further, the molecules are characterized by means of various shape and size order parameters.

Graphical abstract


Soft Matter: Colloids and Nanoparticles 



Open Access funding provided by University of Vienna


  1. 1.
    A.K. Khandpur, S. Foerster, F.S. Bates, I.W. Hamley, A.J. Ryan, W. Bras, K. Almdal, K. Mortensen, Macromolecules 28, 8796 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    N.P. Balsara, M. Tirrell, T.P. Lodge, Macromolecules 24, 1975 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    C.L. Elkins, K. Viswanathan, T.E. Long, Macromolecules 39, 3132 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    J. Chen, N. Seeman, Nature 350, 631 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    E. Andersen, M. Dong, M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M.M. Golas, B. Sander, H. Stark, C.L.P. Oliveira, J. Pedersen, V. Birkedal, F. Besenbacher, K.V. Gothelf, J. Kjems, Nature 459, 73 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    P.W.K. Rothmund, Nature 440, 297 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    R.G. Winkler, D.A. Fedosov, G. Gompper, Curr. Opin. Colloid Interface Sci. 19, 594 (2014)CrossRefGoogle Scholar
  8. 8.
    D. Vlassopoulos, M. Cloitre, Curr. Opin. Colloid Interface Sci. 19, 561 (2014)CrossRefGoogle Scholar
  9. 9.
    C. Micheletti, D. Marenduzzo, E. Orlandini, Phys. Rep. 504, 1 (2011)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Ballauff, C.N. Likos, Angew. Chem. Int. Ed. 116, 3060 (2004)CrossRefGoogle Scholar
  11. 11.
    C.N. Likos, Soft Matter 2, 478 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    M. Pitsikalis, N. Hadjichristidis, J.W. Mays, Macromolecules 29, 179 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    D. Vlassopoulos, T. Pakula, G. Fytas, M. Pitsikalis, N. Hadjichristidis, J. Chem. Phys. 111, 1760 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    F. Lo Verso, A.Z. Panagiotopoulos, C.N. Likos, Phys. Rev. E 79, 010401 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    C. Koch, C.N. Likos, A.Z. Panagiotopoulos, F.L. Verso, Mol. Phys. 109, 3049 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    F. Lo Verso, C.N. Likos, C. Mayer, H. Löwen, Phys. Rev. Lett. 96, 187802 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    F. Lo Verso, C.N. Likos, H. Löwen, J. Phys. Chem. C 111, 15803 (2007)CrossRefGoogle Scholar
  18. 18.
    B. Capone, I. Coluzza, F.L. Verso, C.N. Likos, R. Blaak, Phys. Rev. Lett. 109, 238301 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    B. Capone, I. Coluzza, R. Blaak, F.L. Verso, C.N. Likos, New J. Phys. 15, 095002 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    I. Nezbeda, J. Kolafa, Y.V. Kalyuzhnyi, Mol. Phys. 68, 143 (1989)ADSCrossRefGoogle Scholar
  21. 21.
    M.H. Ford, S.M. Auerbach, P.A. Monson, J. Chem. Phys. 121, 8415 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    A. Lomakin, N. Asherie, G.B. Benedek, Proc. Natl. Acad. Sci. U.S.A. 96, 9465 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    G.M. Whitesides, M. Boncheva, Proc. Natl. Acad. Sci. U.S.A. 99, 4769 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    A.B. Pawar, I. Kretzschmar, Macromol. Rapid Commun. 31, 150 (2010)CrossRefGoogle Scholar
  25. 25.
    E. Bianchi, R. Blaak, C.N. Likos, Phys. Chem. Chem. Phys. 13, 6397 (2011)CrossRefGoogle Scholar
  26. 26.
    L. Rovigatti, B. Capone, C.N. Likos, Nanoscale 8, 3288 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    C.W. Jung, P. Jacobs, Magn. Reson. Imaging 13, 661 (1995)CrossRefGoogle Scholar
  28. 28.
    H. Wang, Y. Yu, Y. Sun, Q. Chen, Nano 06, 1 (2011)CrossRefGoogle Scholar
  29. 29.
    J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)ADSCrossRefGoogle Scholar
  30. 30.
    G.S. Grest, K. Kremer, T.A. Witten, Macromolecules 20, 1376 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Roehm, P. Košovan, C. Holm, in Meshfree Methods for Partial Differential Equations VI, Lect. Notes Comput. Sci. Eng., Vol. 89 (Springer, Berlin, Heidelberg, 2013) pp. 1--23Google Scholar
  32. 32.
    S. Huissmann, R. Blaak, C.N. Likos, Macromolecules 42, 2806 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    K. Šolc, J. Chem. Phys. 55, 335 (1971)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations