Advertisement

The NEUF-DIX space project - Non-EquilibriUm Fluctuations during DIffusion in compleX liquids

  • Philipp Baaske
  • Henri Bataller
  • Marco Braibanti
  • Marina Carpineti
  • Roberto Cerbino
  • Fabrizio Croccolo
  • Aleksandar Donev
  • Werner Köhler
  • José M. Ortiz de Zárate
  • Alberto Vailati
Regular Article
Part of the following topical collections:
  1. Non-isothermal transport in complex fluids

Abstract.

Diffusion and thermal diffusion processes in a liquid mixture are accompanied by long-range non-equilibrium fluctuations, whose amplitude is orders of magnitude larger than that of equilibrium fluctuations. The mean-square amplitude of the non-equilibrium fluctuations presents a scale-free power law behavior q-4 as a function of the wave vector q, but the divergence of the amplitude of the fluctuations at small wave vectors is prevented by the presence of gravity. In microgravity conditions the non-equilibrium fluctuations are fully developed and span all the available length scales up to the macroscopic size of the systems in the direction parallel to the applied gradient. Available theoretical models are based on linearized hydrodynamics and provide an adequate description of the statics and dynamics of the fluctuations in the presence of small temperature/concentration gradients and under stationary or quasi-stationary conditions. We describe a project aimed at the investigation of Non-EquilibriUm Fluctuations during DIffusion in compleX liquids (NEUF-DIX). The focus of the project is on the investigation in micro-gravity conditions of the non-equilibrium fluctuations in complex liquids, trying to tackle several challenging problems that emerged during the latest years, such as the theoretical predictions of Casimir-like forces induced by non-equilibrium fluctuations; the understanding of the non-equilibrium fluctuations in multi-component mixtures including a polymer, both in relation to the transport coefficients and to their behavior close to a glass transition; the understanding of the non-equilibrium fluctuations in concentrated colloidal suspensions, a problem closely related with the detection of Casimir forces; and the investigation of the development of fluctuations during transient diffusion. We envision to parallel these experiments with state-of-the-art multi-scale simulations.

Graphical abstract

Keywords

Topical Issue: Non-isothermal transport in complex fluids 

References

  1. 1.
    B. Berne, R. Pecora, Dynamic Light Scattering: With Applications to Chemistry Biology and Physics (John Wiley and Sons, New York, 1976)Google Scholar
  2. 2.
    J.P. Boon, S. Yip, Molecular Hydrodynamics (Dover, New York, 1980)Google Scholar
  3. 3.
    R.D. Mountain, J.M. Deutch, J. Chem. Phys. 20, 1103 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Ortiz de Zárate, J.V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006)Google Scholar
  5. 5.
    F. Croccolo, J.M. Ortiz de Zárate, J.V. Sengers, to be published in Eur. Phys. J. E, Vol. 39, December issueGoogle Scholar
  6. 6.
    C. Domb, The Critical Point (Taylor & Francis, London, 1996)Google Scholar
  7. 7.
    M.E. Fisher, P.G. de Gennes, C. R. Acad. Sci. Paris B 287, 207 (1978)Google Scholar
  8. 8.
    C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, C. Bechinger, Nature 451, 172 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    T.R. Kirkpatrick, E.G.D. Cohen, J.R. Dorfman, Phys. Rev. A 26, 995 (1982)ADSCrossRefGoogle Scholar
  10. 10.
    D. Ronis, I. Procaccia, Phys. Rev. A 26, 1812 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    D. Brogioli, A. Vailati, Phys. Rev. E 63, 012105 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    A. Donev, A. Fuente, J.B. Bell, A.L. Garcia, Phys. Rev. Lett. 106, 204501 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A. Donev, T.G. Fai, E. Vanden-Eijnden, J. Stat. Mech. P04004, 204501 (2014)Google Scholar
  14. 14.
    B.M. Law, J.C. Nieuwoudt, Phys. Rev. A 40, 3880 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    J.C. Nieuwoudt, B.M. Law, Phys. Rev. A 42, 2003 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    P.N. Segrè, R.W. Gammon, J.V. Sengers, Phys. Rev. E 47, 1026 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    W.B. Li, P.N. Segré, R.W. Gammon, J.V. Sengers, Physica A 204, 399 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    W.B. Li, P.N. Segré, R.W. Gammon, J.V. Sengers, J. Phys.: Condens. Matter A 6, 119 (1994)ADSGoogle Scholar
  19. 19.
    A. Vailati, M. Giglio, Phys. Rev. Lett. 77, 1484 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    A. Vailati, M. Giglio, Nature 390, 262 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    W.B. Li, K.J. Zhang, J.V. Sengers, R.W. Gammon, J.M. Ortiz de Zárate, Phys. Rev. Lett. 81, 5580 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    D. Brogioli, A. Vailati, M. Giglio, Phys. Rev. E 61, R1 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Phys. Rev. E 76, 041112 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    F. Giavazzi, A. Fornasieri, A. Vailati, R. Cerbino, Eur. Phys. J. E 39, 103 (2016)CrossRefGoogle Scholar
  25. 25.
    A. Vailati, R. Cerbino, S. Mazzoni, C.J. Takacs, D.S. Cannell, M. Giglio, Nat. Commun. 2, 290 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    R. Cerbino, Y. Sun, A. Donev, A. Vailati, Sci. Rep. 5, 14486 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    F. Croccolo, C. Giraudet, H. Bataller, R. Cerbino, A. Vailati, Micrograv. Sci. Technol. 28, 467 (2016)CrossRefGoogle Scholar
  28. 28.
    T.R. Kirkpatrick, J.M. Ortiz de Zárate, J.V. Sengers, Phys. Rev. Lett. 110, 235902 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    T.R. Kirkpatrick, J.M. Ortiz de Zárate, J.V. Sengers, Phys. Rev. Lett. 115, 035901 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    J.M. Ortiz de Zárate, T.R. Kirkpatrick, J.V. Sengers, Eur. Phys. J. E 38, 99 (2015)CrossRefGoogle Scholar
  31. 31.
    T.R. Kirkpatrick, J.M. Ortiz de Zárate, J.V. Sengers, Phys. Rev. E 93, 012148 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    T.R. Kirkpatrick, J.M. Ortiz de Zárate, J.V. Sengers, Phys. Rev. E 93, 032117 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    D. Brogioli, F. Croccolo, A. Vailati, Phys. Rev. E 94, 022142 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    H. Bataller, C. Giraudet, F. Croccolo, J.M. Ortiz de Zárate, Micrograv. Sci. Technol. 28, 611 (2016)CrossRefGoogle Scholar
  35. 35.
    C. Giraudet, H. Bataller, Y. Sun, A. Donev, J.M. Ortiz de Zárate, F. Croccolo, EPL 111, 60013 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    C. Giraudet, H. Bataller, Y. Sun, A. Donev, J.M. Ortiz de Zárate, F. Croccolo, to be published in Eur. Phys. J. E, Vol. 39, December issueGoogle Scholar
  37. 37.
    F. Giavazzi, G. Savorana, A. Vailati, R. Cerbino, Soft Matter 12, 6588 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    F. Croccolo, H. Bataller, F. Scheffold, J. Chem. Phys. 137, 234202 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    J.M. Ortiz de Zárate, C. Giraudet, H. Bataller, F. Croccolo, Eur. Phys. J. E 37, 77 (2014)CrossRefGoogle Scholar
  40. 40.
    J. Rauch, W. Köhler, Phys. Rev. Lett. 88, 185901 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    J. Rauch, W. Köhler, J. Phys. Chem. 119, 11977 (2003)CrossRefGoogle Scholar
  42. 42.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Ann. N.Y. Acad. Sci. 1077, 365 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    A. Oprisan, S. Oprisan, A. Teklu, Appl. Opt. 49, 86 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    A. Donev, E. Vanden-Eijnden, J. Chem. Phys. 140, 234115 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    A. Donev, A. Nonaka, A.K. Bhattacharjee, A.L. Garcia, J.B. Bell, Phys. Fluids 27, 037103 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, G. Nikolaenko, C.J. Takacs, D.S. Cannell, W.V. Meyer, A.E. Smart, Appl. Opt. 45, 2155 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    C.J. Takacs, A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, D.S. Cannell, Phys. Rev. Lett. 106, 244502 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    P.N. Segré, J.V. Sengers, Physica A 198, 46 (1993)ADSCrossRefGoogle Scholar
  49. 49.
    F. Giavazzi, A. Vailati, Phys. Rev. E 80, R015303 (2009)ADSGoogle Scholar
  50. 50.
    J.M. Ortiz de Zárate, F. Peluso, J.V. Sengers, Eur. Phys. J. E 15, 319 (2004)CrossRefGoogle Scholar
  51. 51.
    A. Vailati, M. Giglio, Phys. Rev. E 58, 4361 (1998)ADSCrossRefGoogle Scholar
  52. 52.
    I. Lizarraga, C. Giraudet, F. Croccolo, M.M. Bou-Ali, H. Bataller, Micrograv. Sci. Technol. 28, 267 (2016)CrossRefGoogle Scholar
  53. 53.
    M. Giglio, M. Carpineti, A. Vailati, Phys. Rev. Lett. 85, 1416 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    M. Giglio, M. Carpineti, A. Vailati, D. Brogioli, Appl. Opt. 40, 4036 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    D. Brogioli, A. Vailati, M. Giglio, Appl. Phys. Lett. 81, 4109 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    F. Croccolo, D. Brogioli, App. Opt. 50, 3419 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    R. Cerbino, A. Vailati, Curr. Opin. Colloid Interface Sci. 14, 416 (2009)CrossRefGoogle Scholar
  58. 58.
    S.J. Veen, O. Antoniuk, B. Weber, M.A.C. Potenza, S. Mazzoni, P. Schall, G.H. Wegdam, Phys. Rev. Lett. 109, 248302 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    S. Mazzoni, M.A.C. Potenza, M.D. Alaimo, S.J. Veen, M. Dielissen, E. Leussink, J.L. Dewandel, O. Minster, E. Kufner, G. Wegdam et al., Rev. Sci. Instrum. 84, 043704 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    C. Giraudet, H. Bataller, F. Croccolo, Eur. Phys. J. E 37, 107 (2014)CrossRefGoogle Scholar
  61. 61.
    H.B.G. Casimir, Proc. Koninklijke Nederlandse Acad. Wetenschappen B 51, 793 (1948)Google Scholar
  62. 62.
    A. Gambassi, C. Hertlein, L. Helden, C. Bechinger, S. Dietrich, Europhysics News 40, 18 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    J.M. Ortiz de Zárate, R. Pérez Cordón, J.V. Sengers, Physica A 291, 113 (2001)ADSCrossRefGoogle Scholar
  64. 64.
    R. Schmitz, Physica A 206, 25 (1994)ADSCrossRefGoogle Scholar
  65. 65.
    M.M. Bou-Ali, A. Ahadi, D.A. de Mezquia, Q. Galand, M. Gebhardt, O. Khlybov, W. Köhler, M. Larranaga, J.C. Legros, T. Lyubimova et al., Eur. Phys. J. E 38, 30 (2015)CrossRefGoogle Scholar
  66. 66.
    M. Gebhard, W. Köhler, Eur. Phys. J. E 38, 24 (2015)CrossRefGoogle Scholar
  67. 67.
    W. Köhler, K.I. Morozov, J. Non-Equilib. Thermodyn. 41, 151 (2016)ADSCrossRefGoogle Scholar
  68. 68.
    M. Gebhardt, W. Köhler, J. Chem. Phys. 142, 084506 (2015)ADSCrossRefGoogle Scholar
  69. 69.
    M. Gebhardt, W. Köhler, J. Chem. Phys. 143, 164511 (2015)ADSCrossRefGoogle Scholar
  70. 70.
    S. Srinivasan, M.Z. Saghir, J. Chem. Phys. 131, 124508 (2009)ADSCrossRefGoogle Scholar
  71. 71.
    S.V. Vaerenbergh, S. Srinivasan, M.Z. Saghir, J. Chem. Phys. 131, 114505 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    M. Touzet, V.L.G. Galliero, M.Z. Saghir, F. Montel, J.C. Legros, C. R. Méc. 339, 318 (2011)CrossRefGoogle Scholar
  73. 73.
    G. Galliero, H. Bataller, F. Croccolo, R. Vermorel, P. a. Artola, B. Rousseau, V. Vesovic, M.M. Bou-Ali, J.M. Ortiz de Zárate, S. Xu et al., Micrograv. Sci. Technol. 28, 79 (2016)CrossRefGoogle Scholar
  74. 74.
    P. Martinez Pancorbo, J.M. Ortiz de Zárate, H. Bataller, F. Croccolo, to be published in Eur. Phys. J. EGoogle Scholar
  75. 75.
    H. Bataller, T. Triller, B. Pur, W. Köhler, J.M. Ortiz de Zárate, F. Croccolo, submitted to Eur. Phys. J. EGoogle Scholar
  76. 76.
    K.J. Zhang, M.E. Briggs, R.W. Gammon, J.V. Sengers, J. Chem. Phys. 104, 6881 (1996)ADSCrossRefGoogle Scholar
  77. 77.
    K.J. Zhang, M.E. Briggs, R.W. Gammon, J.V. Sengers, J.F. Douglas, J. Chem. Phys. 111, 2270 (1999)ADSCrossRefGoogle Scholar
  78. 78.
    K.I. Morozov, W. Köhler, Langmuir 30, 6571 (2014)CrossRefGoogle Scholar
  79. 79.
    R. Franz, G. Wiedemann, Ann. Phys. (Leipzig) 165, 497 (1853)ADSCrossRefGoogle Scholar
  80. 80.
    W. Enge, W. Köhler, Phys. Chem. Chem. Phys. 6, 2373 (2004)CrossRefGoogle Scholar
  81. 81.
    R. Cerbino, V. Trappe, Phys. Rev. Lett. 100, 188102 (2008)ADSCrossRefGoogle Scholar
  82. 82.
    F. Giavazzi, D. Brogioli, V. Trappe, T. Bellini, R. Cerbino, Phys. Rev. E 80, 031403 (2009)ADSCrossRefGoogle Scholar
  83. 83.
    F. Giavazzi, R. Cerbino, J. Opt. 16, 83001 (2014)CrossRefGoogle Scholar
  84. 84.
    J. Zhu, M. Li, R. Rogers, W. Meyer, W.R.R.H. Ottewill, STS-73 Space Shuttle Crew, P. Chaikin, Nature 387, 883 (1997)ADSCrossRefGoogle Scholar
  85. 85.
    J.S. Huang, W.I. Goldburg, A.W. Bjierkaas, Phys. Rev. Lett. 32, 921 (1974)ADSCrossRefGoogle Scholar
  86. 86.
    K. Binder, D. Stauffer, Phys. Rev. Lett. 33, 1006 (1974)ADSCrossRefGoogle Scholar
  87. 87.
    M. Carpineti, M. Giglio, Phys. Rev. Lett. 68, 3327 (1992)ADSCrossRefGoogle Scholar
  88. 88.
    A. Donev, A.L. Garcia Anton de la Fuente, J.B. Bell, Phys. Rev. Lett. 106, 204501 (2011)ADSCrossRefGoogle Scholar
  89. 89.
    A. Donev, T.G. Fai, E. Vanden-Eijnden, J. Stat. Mech. Theor. Exp. 2014, P04004 (2014)CrossRefGoogle Scholar
  90. 90.
    A. Donev, E. Vanden-Eijnden, A.L. Garcia, J.B. Bell, Commun. App. Math. Comp. Sci. 5, 149 (2010)MathSciNetCrossRefGoogle Scholar
  91. 91.
    F.B. Usabiaga, J.B. Bell, R. Delgado-Buscalioni, A. Donev, T.G. Fai, B.E. Griffith, C.S. Peskin, Multiscale Model. Simul. 10, 1369 (2012)MathSciNetCrossRefGoogle Scholar
  92. 92.
    S. Delong, B.E. Griffith, E. Vanden-Eijnden, A. Donev, Phys. Rev. E 87, 033302 (2013)ADSCrossRefGoogle Scholar
  93. 93.
    S. Delong, Y. Sun, B.E. Griffith, E. Vanden-Eijnden, A. Donev, Phys. Rev. E 90, 063312 (2014)ADSCrossRefGoogle Scholar
  94. 94.
    A. Donev, A.J. Nonaka, Y. Sun, T.G. Fai, A.L. Garcia, J.B. Bell, Commun. App. Math. Comp. Sci. 9, 47 (2014)MathSciNetCrossRefGoogle Scholar
  95. 95.
    A.J. Nonaka, Y. Sun, J.B. Bell, A. Donev, Commun. App. Math. Comp. Sci. 10, 163 (2015)MathSciNetCrossRefGoogle Scholar
  96. 96.
    A. Donev, A.J. Nonaka, A.K. Bhattacharjee, A.L. Garcia, J.B. Bell, Phys. Fluids 27, 037103 (2015)ADSCrossRefGoogle Scholar
  97. 97.
    J. Carballido-Landeira, P.M.J. Trevelyan, C. Almarcha, A.D. Wit, Phys. Fluids 25, 024107 (2013)ADSCrossRefGoogle Scholar
  98. 98.
    A. Chaudhri, J.B. Bell, A.L. Garcia, A. Donev, Phys. Rev. E 90, 033014 (2014)ADSCrossRefGoogle Scholar
  99. 99.
    A.K. Bhattacharje, K. Balakrishnan, A.L. Garcia, J.B. Bell, A. Donev, J. Chem. Phys. 142, 224107 (2015)ADSCrossRefGoogle Scholar
  100. 100.
    A. Chaudhri, J.B. Bell, A. Donev, J.p. Peraud, A. Nonaka, A.L. Garcia, submitted to Phys. Rev. F, arXiv:1607.05361 (2016)
  101. 101.
    H.C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1976)Google Scholar
  102. 102.
    M. Kerker, The Scattering of Light (Academic, New York, 1969)Google Scholar
  103. 103.
    A.P.Y. Wong, P. Wiltzius, Rev. Sci. Instrum. 64, 2547 (1993)ADSCrossRefGoogle Scholar
  104. 104.
    F. Ferri, Rev. Sci. Instrum. 68, 2265 (1997)ADSCrossRefGoogle Scholar
  105. 105.
    L. Cipelletti, D.A. Weitz, Rev. Sci. Instrum. 70, 5 (1999)CrossRefGoogle Scholar
  106. 106.
    S.P. Trainoff, D.S. Cannell, Phys. Fluids 14, 1340 (2002)ADSCrossRefGoogle Scholar
  107. 107.
    D. Brogioli, A. Vailati, M. Giglio, Europhys. Lett. 63, 220 (2003)ADSCrossRefGoogle Scholar
  108. 108.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, App. Opt. 45, 2166 (2006)ADSCrossRefGoogle Scholar
  109. 109.
    G. Cerchiari, F. Croccolo, F. Cardinaux, F. Scheffold, Rev. Sci. Instrum. 83, 106101 (2012)ADSCrossRefGoogle Scholar
  110. 110.
    P.J. Lu, F. Giavazzi, T.E. Angelini, E. Zaccarelli, F. Jargstorff, A.B. Schofield, J.N. Wilking, M.B. Romanowsky, D.A. Weitz, R. Cerbino, Phys. Rev. Lett. 108, 218103 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Philipp Baaske
    • 1
  • Henri Bataller
    • 2
  • Marco Braibanti
    • 3
  • Marina Carpineti
    • 4
  • Roberto Cerbino
    • 5
  • Fabrizio Croccolo
    • 2
    • 6
  • Aleksandar Donev
    • 7
  • Werner Köhler
    • 8
  • José M. Ortiz de Zárate
    • 9
  • Alberto Vailati
    • 4
  1. 1.Nanotemper Technologies GmbHMunichGermany
  2. 2.Laboratoire des Fluides Complexes et leurs Réservoirs - UMR5150Université de Pau et des Pays de l’AdourAngletFrance
  3. 3.ESA-EstecNoordwijkThe Netherlands
  4. 4.Dipartimento di FisicaUniversità degli Studi di MilanoMilanoItaly
  5. 5.Dipartimento di Biotecnologie Mediche e Medicina TraslazionaleUniversità degli Studi di MilanoSegrate (MI)Italy
  6. 6.Centre Nationale d’Etudes SpatialesParisFrance
  7. 7.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  8. 8.Physikalisches InstitutUniversität BayreuthBayreuthGermany
  9. 9.Department of Applied Physics IUniversidad ComplutenseMadridSpain

Personalised recommendations