Skip to main content
Log in

Dynamics of topological monopoles annihilation on a fibre in a thick and thin nematic layer

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study topological defect annihilation on a glass fibre with homeotropic surface anchoring of nematic liquid crystal molecules. The fibre is set parallel to the nematic director of a planar cell with variable thickness and we create pairs of Saturn ring and Saturn anti-ring using the laser tweezers. In thick cells we observe in the whole region of defect separation a Coulomb-like pair attraction with no background force, \( F\propto 1/d^{\alpha}\) with \(\alpha \approx 2\pm 0.3\). In cells with thickness comparable to glass fibre diameter, we observe the Coulomb-like attraction only at small separations of the defect pair. For separations larger than the fibre diameter, the pair interaction force is independent of separation. This string-like force is attributed to the formation of defect lines, connecting both monopoles and are indeed visible only on extremely confined fibre, where the fibre diameter is practically equal to the nematic layer thickness. Numerical simulations confirm the formation of defect lines connecting both rings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Mermin, Rev. Mod. Phys. 51, 591 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  2. T.W.B. Kibble, J. Phys. A 9, 1387 (1976)

    Article  ADS  Google Scholar 

  3. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995)

  4. M.V. Kurik, O.D. Lavrentovich, Sov. Phys. Usp. 154, 381 (1988)

    Article  MathSciNet  Google Scholar 

  5. M. Kleman, O.D. Lavrentovich, Soft Matter Physics (Springer-Verlag, Berlin, 2003)

  6. G.P. Alexander, B.G. Chen, E.A. Matsumoto, R.D. Kamien, Rev. Mod. Phys. 84, 497 (2012)

    Article  ADS  Google Scholar 

  7. S. Čopar, Phys. Rep. 538, 1 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. I. Chuang, R. Durrer, N. Turok, B. Yurke, Science 251, 1336 (1991)

    Article  ADS  Google Scholar 

  9. M.J. Bowick, L. Chandar, E.A. Schiff, A.M. Srivasava, Science 263, 943 (1994)

    Article  ADS  Google Scholar 

  10. G. Toth, C. Denniston, J.M. Yeomans, Phys. Rev. Lett. 88, 105504 (2002)

    Article  ADS  Google Scholar 

  11. D. Svenšek, S. Zumer, Phys. Rev. E 66, 021712 (2002)

    Article  ADS  Google Scholar 

  12. C. Liu, J. Shen, X. Yang, Commun. Comput. Phys. 2, 1184 (2007)

    Google Scholar 

  13. G. Toth, C. Denniston, J.M. Yeomans, Phys. Rev. E 67, 051705 (2003)

    Article  ADS  Google Scholar 

  14. I. Dierking, M. Ravnik, E. Lark, J. Healey, G.P. Alexander, J.M. Yeomans, Phys. Rev. E 85, 021703 (2012)

    Article  ADS  Google Scholar 

  15. P. Oswald, J. Igneś-Mullol, Phys. Rev. Lett. 95, 027801 (2005)

    Article  ADS  Google Scholar 

  16. C. Blanc, D. Svenšek, S. Zumer, M. Nobili, Phys. Rev. Lett. 95, 097802 (2005)

    Article  ADS  Google Scholar 

  17. T. Yanagimachi, S. Yasuzuka, Y. Yamamura, K. Saito, J. Phys. Soc. Jpn. 81, 034601 (2012)

    Article  ADS  Google Scholar 

  18. M. Nikkhou, M. Skarabot, I. Muševič, Phys. Rev. E 93, 062703 (2016)

    Article  ADS  Google Scholar 

  19. K. Minoura, Y. Kimura, K. Ito, R. Hayakawa, Phys. Rev. E 58, 643 (1997)

    Article  ADS  Google Scholar 

  20. A. Bogi, P. Martinot-Laharde, I. Dozov, M. Nobili, Phys. Rev. Lett. 89, 225501 (2002)

    Article  ADS  Google Scholar 

  21. P. Poulin, D.A. Weitz, Phys. Rev. E 57, 626 (1998)

    Article  ADS  Google Scholar 

  22. R. Pratibha, N.V. Madhusudana, Mol. Cryst. Liq. Cryst. 178, 167 (1990)

    Google Scholar 

  23. Y. Gu, N.L. Abbott, Phys. Rev. Lett. 85, 4719 (2000)

    Article  ADS  Google Scholar 

  24. I. Muševič, M. Skarabot, U. Tkalec, M. Ravnik, S. Zumer, Science 313, 954 (2006)

    Article  ADS  Google Scholar 

  25. M. Skarabot, M. Ravnik, S. Zumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, I. Muševič, Phys. Rev. E 76, 051406 (2007)

    Article  ADS  Google Scholar 

  26. M. Skarabot, M. Ravnik, S. Zumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, I. Muševič, Phys. Rev. E 77, 031705 (2008)

    Article  ADS  Google Scholar 

  27. A.B. Nych, U.M. Ognysta, V.M. Pergamenshchik, B.I. Lev, V.G. Nazarenko, I. Muševič, M. Skarabot, O.D. Lavrentovich, Phys. Rev. Lett. 98, 057801 (2007)

    Article  ADS  Google Scholar 

  28. I. Muševič, M. Skarabot, Soft Matter 4, 195 (2008)

    Article  ADS  Google Scholar 

  29. U. Ognysta, A. Nych, V. Nazarenko, I. Muševič, M. Skarabot, M. Ravnik, S. Zumer, I. Poberaj, D. Babič, Phys. Rev. Lett. 100, 17803 (2008)

    Article  Google Scholar 

  30. A. Nych, U. Ognysta, M. Skarabot, M. Ravnik, S. Zumer, I. Muševič, Nat. Commun. 4, 1489 (2013)

    Article  ADS  Google Scholar 

  31. M. Ravnik, M. Skarabot, S. Zumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, I. Muševič, Phys. Rev. Lett. 99, 247801 (2007)

    Article  ADS  Google Scholar 

  32. B. Senyuk, Q. Liu, S. He, R.D. Kamien, R.B. Kusner, T.C. Lubensky, I.I. Smalyukh, Nature 493, 200 (2013)

    Article  ADS  Google Scholar 

  33. B. Senyuk, M.B. Pandey, Q. Liu, M. Tasinkevych, I.I. Smalyukh, Soft Matter 493, 200 (2015)

    Google Scholar 

  34. M. Nikkhou, M. Skarabot, S. Čopar, M. Ravnik, S. Zumer, I. Muševič, Nat. Phys. 11, 183 (2015)

    Article  Google Scholar 

  35. M. Nikkhou, M. Skarabot, I. Muševič, Eur. Phys. J. E 38, 23 (2015)

    Article  Google Scholar 

  36. W.H. Zurek, Phys. Rep. 276, 177 (1996)

    Article  ADS  Google Scholar 

  37. O.D. Lavrentovich, Liq. Cryst. 24, 117 (1998)

    Article  Google Scholar 

  38. B. Yurke, A.N. Pargellis, T. Kovacs, D.A. Huse, Phys. Rev. E 47, 1525 (1993)

    Article  ADS  Google Scholar 

  39. O.D. Lavrentovich, S.S. Rozhkov, JETP Lett. 47, 254 (1988)

    ADS  Google Scholar 

  40. A. Rapini, L. Leger, A. Martinet, J. Phys. (Paris) Colloq. 36, C1-189 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Muševič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikkhou, M., Škarabot, M., Čopar, S. et al. Dynamics of topological monopoles annihilation on a fibre in a thick and thin nematic layer. Eur. Phys. J. E 39, 100 (2016). https://doi.org/10.1140/epje/i2016-16100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16100-0

Keywords

Navigation