Hygroscopic study of hydroxypropylcellulose

Structure and strain-induced birefringence of capillary bridges
Regular Article

Abstract.

The hygroscopic method developed previously for studies of lyotropic liquid crystals is used for the first time in experiments with millimetric capillary bridges made of a hydroxypropylcellulose/water mixture. Composition of such very small samples is controlled via humidity of the surrounding air. By a slow and well-controlled drying of initially isotropic samples, the isotropic/anisotropic phase transition is crossed and polydomain pseudo-isotropic capillary bridges are prepared. Kept in an atmosphere of constant humidity, these bridges are stretched and the strain-induced birefringence \( \Delta\) n is measured as a function of the draw ratio \( \lambda\) . The variation of \( \Delta\) n with \( \lambda\) is interpreted in terms of an affine uniaxial deformation of the initial pseudo-isotropic texture.

Graphical abstract

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    R.S. Werbowyj, D.G. Gray, Macromolecules 13, 69 (1980)ADSCrossRefGoogle Scholar
  2. 2.
    R.S. Werbowyj, D.G. Gray, Macromolecules 17, 1512 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    S. Fortin, G. Charlet, Macromolecules 22, 2286 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    S. Guido, Macromolecules 13, 4530 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    H. Fischer, M. Murray, A. Keller, J.A. Odell, J. Math. Sci. 30, 4623 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    M.H. Godinho, PhD work Contribuçao para o estudos dos polymeros liquidos cristalinos derivados da celulosa (Lisboa, 1991). 1ptGoogle Scholar
  7. 7.
    Y. Nishio, R. Chiba, Y. Miyashita, K. Oshima, T. Miyajima, N. Kimura, H. Suzuki, Polym. J. 34, 149 (2002)CrossRefGoogle Scholar
  8. 8.
    M.H. Godinho, J.J. van der Klink, A.F. Martins, J. Phys.: Condens. Matter 15, 5461 (2003)ADSGoogle Scholar
  9. 9.
    Y. Geng, P.L. Almeida, G.M. Feio, J.L. Figuerinhas, M.H. Godinho, Macromolecules 46, 4296 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    P. Pieranski, J. Phys.: Condens. Matter 17, S3333 (2005)ADSGoogle Scholar
  11. 11.
    M. Warner, E.M. Terentjev, Liquid Crystals Elastomers (Clarendon Press, Oxford, 2007). 1ptGoogle Scholar
  12. 12.
    P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid Crystals (Taylor & Francis, 2005) p. 193. 1ptGoogle Scholar
  13. 13.
    G.H. McKinley, T. Sridhar, Annu. Rev. Fluid Mech. 34, 375 (2002)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    S. Hess, D. Frenkel, M.P. Allen, Mol. Phys. 74, 765 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Onogi, J.L. White, J.F. Fellers, J. Non-Newton. Fluid Mech. 7, 121 (1980)CrossRefGoogle Scholar
  16. 16.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986). 1ptGoogle Scholar
  17. 17.
    B. Erman, J.E. Mark, Structures and Properties of Rubberlike Networks (Oxford University Press, New York, 1997). 1ptGoogle Scholar
  18. 18.
    A. Vieyres, R. Pérez-Aparicio, P.-A. Albouy, O. Sanséau, K. Saalwächter, D. R. Long, P. Sotta, Macromolecules 46, 889 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    M. Ott, R. Pérez-Aparicio, H. Schneider, P. Sotta, K. Saalwächter, Macromolecules, 47, 7597 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.CENIMAT - Centro de Investigaçao em Materiais, Faculdade de Ciências e TecnologiaUniversidade Nova de Lisboa Campus da CaparicaCaparicaPortugal
  2. 2.Laboratoire de Physique des SolidesUMR 8502, Université Paris-SudOrsayFrance
  3. 3.Laboratoire Polymères et Matériaux AvancésCNRS/Rhodia-Solvay, UMR 5268Saint FonsFrance

Personalised recommendations