Advertisement

Shear banding in nematogenic fluids with oscillating orientational dynamics

Open Access
Regular Article
  • 264 Downloads
Part of the following topical collections:
  1. Nonequilibrium Collective Dynamics in Condensed and Biological Matter

Abstract.

We investigate the occurrence of shear banding in nematogenic fluids under planar Couette flow, based on mesoscopic dynamical equations for the orientational order parameter and the shear stress. We focus on parameter values where the sheared homogeneous system exhibits regular oscillatory orientational dynamics, whereas the equilibrium system is either isotropic (albeit close to the isotropic-nematic transition) or deep in its nematic phase. The numerical calculations are restricted to spatial variations in shear gradient direction. We find several new types of shear-banded states characterized by regions with regular oscillatory orientational dynamics. In all cases shear banding is accompanied by a non-monotonicity of the flow curve of the homogeneous system; however, only in the case of the initially isotropic system this curve has the typical S-like shape. We also analyze the influence of different orientational boundary conditions and of the spatial correlation length.

Graphical abstract

Keywords

Topical Issue: Nonequilibrium Collective Dynamics in Condensed and Biological Matter 

References

  1. 1.
    S.M. Fielding, Soft Matter 3, 1262 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    J.K. Dhont, W.J. Briels, Rheol. Acta 47, 257 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Lopez-Gonzalez, W. Holmes, P. Callaghan, P. Photinos, Phys. Rev. Lett. 93, 268302 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    J. Decruppe, R. Cressely, R. Makhloufi, E. Cappelaere, Colloid Polym. Sci. 273, 346 (1995)CrossRefGoogle Scholar
  5. 5.
    L. Chen, C. Zukoski, B. Ackerson, H. Hanley, G. Straty, J. Barker, C. Glinka, Phys. Rev. Lett. 69, 688 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    V. Chikkadi, D. Miedema, M. Dang, B. Nienhuis, P. Schall, Phys. Rev. Lett. 113, 208301 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    J. Goveas, P. Olmsted, Eur. Phys. J. E 6, 79 (2001)CrossRefGoogle Scholar
  8. 8.
    N. Spenley, X. Yuan, M. Cates, J. Phys. II 6, 551 (1996)Google Scholar
  9. 9.
    P. Olmsted, O. Radulescu, C.Y. Lu, J. Rheol. 44, 257 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Y.G. Tao, W. den Otter, W. Briels, Phys. Rev. Lett. 95, 237802 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    M. Ripoll, P. Holmqvist, R.G. Winkler, G. Gompper, J.K.G. Dhont, M.P. Lettinga, Phys. Rev. Lett. 101, 168302 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    P.D. Olmsted, C.Y.D. Lu, Phys. Rev. E 60, 4397 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    R. Larson, Macromolecules 23, 3983 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    O. Hess, S. Hess, Phys. A 207, 517 (1994)CrossRefGoogle Scholar
  15. 15.
    G. Rienäcker, M. Kröger, S. Hess, Phys. Rev. E 66, 040702 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    E.V. Alonso, A.A. Wheeler, T.J. Sluckin, Proc. R. Soc. A 459, 195 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    P.D. Olmsted, P. Goldbart, Phys. Rev. A 41, 4578 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    P.D. Olmsted, Ph.D. thesis, University of Illinois, Urbana-Champaign (1991)Google Scholar
  19. 19.
    P.D. Olmsted, P.M. Goldbart, Phys. Rev. A 46, 4966 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    D.C. Roux, J.F. Berret, G. Porte, E. Peuvrel-Disdier, P. Lindner, Macromolecules 28, 1681 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    M. Lettinga, Z. Dogic, H. Wang, J. Vermant, Langmuir 21, 8048 (2005)CrossRefGoogle Scholar
  22. 22.
    B. Chakrabarti, M. Das, C. Dasgupta, S. Ramaswamy, A. Sood, Phys. Rev. Lett. 92, 055501 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    M.G. Forest, R. Zhou, Q. Wang, Multiscale Model. Simul. 6, 858 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    D. Chakraborty, C. Dasgupta, A.K. Sood, Phys. Rev. E 82, 065301 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    M. Das, B. Chakrabarti, C. Dasgupta, S. Ramaswamy, A.K. Sood, Phys. Rev. E 71, 021707 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    D.A. Strehober, H. Engel, S.H.L. Klapp, Phys. Rev. E 88, 012505 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    H. Zhou, M.G. Forest, Q. Wang, Technical report, DTIC Document (2007)Google Scholar
  28. 28.
    J.K.G. Dhont, M.P. Lettinga, Z. Dogic, T.A.J. Lenstra, H. Wang, S. Rathgeber, P. Carletto, L. Willner, H. Frielinghaus, P. Lindner, Farad. Discuss. 123, 157 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    P.G. de Gennes, The physics of liquid crystals (Clarendon Press, Oxford, 1993)Google Scholar
  30. 30.
    S. Hess, Tensors for Physics (Springer Intl., Switzerland, 2015)Google Scholar
  31. 31.
    R. Lugo-Frias, S.H.L. Klapp, J. Phys.: Condens. Matter (2016)Google Scholar
  32. 32.
    C. Oseen, Trans. Faraday Soc. 29, 883 (1933)CrossRefGoogle Scholar
  33. 33.
    F.C. Frank, Discuss. Faraday Soc. 25, 19 (1958)CrossRefGoogle Scholar
  34. 34.
    Y. Singh, K. Singh, Phys. Rev. A 33, 3481 (1985)ADSCrossRefGoogle Scholar
  35. 35.
    K. Singh, Y. Singh, Phys. Rev. A 34, 548 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    K. Singh, Y. Singh, Phys. Rev. A 35, 3535 (1987)ADSCrossRefGoogle Scholar
  37. 37.
    G. Taylor, Proc. R. Soc. London. Ser. A, Math. Phys. Character 103, 58 (1923)ADSCrossRefGoogle Scholar
  38. 38.
    S. Hess, Z. Naturforsch. 30a, 728 (1975)ADSGoogle Scholar
  39. 39.
    I. Pardowitz, S. Hess, Phys. A 100, 540 (1980)CrossRefGoogle Scholar
  40. 40.
    S. Heidenreich, Ph.D. thesis, TU Berlin (2009)Google Scholar
  41. 41.
    C. Pereira-Borgmeyer, S. Hess, J. Non-Equilib. Thermodyn. 20, 359 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    S. Hess, Z. Naturforsch. 31a, 1034 (1976)ADSGoogle Scholar
  43. 43.
    S.R. De Groot, P. Mazur, Non-equilibrium thermodynamics (Dover, 1983)Google Scholar
  44. 44.
    R. Ganapathy, S. Majumdar, A.K. Sood, Phys. Rev. E 78, 021504 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    S. Hess, M. Kröger, J. Phys.: Condens. Matter 16, S3835 (2004)ADSGoogle Scholar
  46. 46.
    S. Hess, M. Kröger, in Computer Simulations of Liquid Crystals and Polymers (Springer Verlag, 2005) pp. 295--333Google Scholar
  47. 47.
    P. Kaiser, W. Wiese, S. Hess, J. Non-Equilib. Thermodyn. 17, 153 (1992)ADSCrossRefGoogle Scholar
  48. 48.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, Vol. 2 (Cambridge University press, Cambridge, 1996)Google Scholar
  49. 49.
    G. Rienäcker, Orientational dynamics of nematic liquid crystals in a shear flow (Shaker Verlag, Aachen, 2000)Google Scholar
  50. 50.
    P. Sheng, Phys. Rev. A 26, 1610 (1982)ADSCrossRefGoogle Scholar
  51. 51.
    B. Jerome, Rep. Prog. Phys. 54, 391 (1991)ADSCrossRefGoogle Scholar
  52. 52.
    M. Ruths, S. Steinberg, J.N. Israelachvili, Langmuir 12, 6637 (1996)CrossRefGoogle Scholar
  53. 53.
    O. Manyuhina, A.M. Cazabat, M.B. Amar, EPL 92, 16005 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    O. Radulescu, P. Olmsted, J. Non-Newton. Fluid 91, 143 (2000)CrossRefGoogle Scholar
  55. 55.
    J. Adams, S. Fielding, P. Olmsted, J. Non-Newton. Fluid Mech. 151, 101 (2008)CrossRefGoogle Scholar
  56. 56.
    C.Y.D. Lu, P.D. Olmsted, R. Ball, Phys. Rev. Lett. 84, 642 (2000)ADSCrossRefGoogle Scholar
  57. 57.
    P.D. Olmsted, Rheol. Acta 47, 283 (2008)CrossRefGoogle Scholar
  58. 58.
    K.R. Purdy, Z. Dogic, S. Fraden, A. Rühm, L. Lurio, S.G.J. Mochrie, Phys. Rev. E 67, 031708 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    Z. Dogic, S. Fraden, Langmuir 16, 7820 (2000)CrossRefGoogle Scholar
  60. 60.
    M. Fardin, T. Ober, V. Grenard, T. Divoux, S. Manneville, G. McKinley, S. Lerouge, Soft Matter 8, 10072 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    N. Herdegen, S. Hess, Physica A 115, 281 (1982)ADSCrossRefGoogle Scholar
  62. 62.
    W. Loose, S. Hess, Phys. Rev. A 37, 2099 (1988)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations