Advertisement

Vesicles-on-a-chip: A universal microfluidic platform for the assembly of liposomes and polymersomes

  • Julien Petit
  • Ingmar Polenz
  • Jean-Christophe Baret
  • Stephan Herminghaus
  • Oliver Bäumchen
Open Access
Tips and Tricks

Abstract.

In this study, we present a PDMS-based microfluidic platform for the fabrication of both liposomes and polymersomes. Based on a double-emulsion template formed in flow-focusing configuration, monodisperse liposomes and polymersomes are produced in a controlled manner after solvent extraction. Both types of vesicles can be formed from the exact same combination of fluids and are stable for at least three months under ambient storage conditions. By tuning the flow rates of the different fluid phases in the flow-focusing microfluidic design, the size of the liposomes and polymersomes can be varied over at least one order of magnitude. This method offers a versatile tool for future studies, e.g., involving the encapsulation of biological agents and the functionalization of artificial cell membranes, and might also be applicable for the controlled fabrication of hybrid vesicles.

Graphical abstract

Keywords

Tips and Tricks 

Notes

Open access funding provided by Max Planck Society (or associated institution if applicable).

References

  1. 1.
    J.W. Szostak, D.P. Bartel, P.L. Luisi, Nature 409, 387 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    D. Deamer, Trends Biotechnol. 23, 336 (2005)CrossRefGoogle Scholar
  3. 3.
    A.D. Griffiths, D.S. Tawfik, Trends Biotechnol. 24, 395 (2006)CrossRefGoogle Scholar
  4. 4.
    D.S. Tawfik, A.D. Griffiths, Nat. Biotechnol. 16, 652 (1998)CrossRefGoogle Scholar
  5. 5.
    P.L. Luisi, Anatom. Record 268, 208 (2002)CrossRefGoogle Scholar
  6. 6.
    P. Schwille, S. Diez, Crit. Rev. Biochem. Mol. Biol. 44, 223 (2009)CrossRefGoogle Scholar
  7. 7.
    V. Noireaux, A. Libchaber, Proc. Natl. Acad. Sci. U.S.A. 101, 17669 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    S. Mirschel, K. Steinmetz, M. Rempel, M. Ginkel, E.D. Gilles, Bioinformatics 25, 687 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Klamt, J. Saez-Rodriguez, E. Gilles, BMC Syst. Biol. 13, 1 (2007)Google Scholar
  10. 10.
    M. Hucka, A. Finney, H.M. Sauro, H. Bolouri, J.C. Doyle, H. Kitano, A.P. Arkin, B.J. Bornstein, D. Bray, A. Cornish-Bowden et al., Bioinformatics 19, 524 (2003)CrossRefGoogle Scholar
  11. 11.
    J. Stelling, S. Klamt, K. Bettenbrock, Nature 420, 3 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    S. Mann, Angew. Chem. Int. Ed. 52, 155 (2013)CrossRefGoogle Scholar
  13. 13.
    P. Stano, P.L. Luisi, Chem. Commun. 46, 3639 (2010)CrossRefGoogle Scholar
  14. 14.
    V. Noireaux, Y.T. Maeda, A. Libchaber, Proc. Natl. Acad. Sci. U.S.A. 108, 3473 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Nourian, W. Roelofsen, C. Danelon, Angew. Chem. 124, 3168 (2012)CrossRefGoogle Scholar
  16. 16.
    X. Zhang, P. Tanner, A. Graff, C.G. Palivan, W. Meier, J. Polym. Sci. Part A: Polym. Chem. 50, 2293 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    D. van Swaay, Lab Chip 13, 752 (2013)CrossRefGoogle Scholar
  18. 18.
    G.M. Whitesides, Nature 442, 368 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Lab Chip 6, 437 (2006)CrossRefGoogle Scholar
  20. 20.
    R.K. Shah, H.C. Shum, A.C. Rowat, D. Lee, J.J. Agresti, A.S. Utada, L.Y. Chu, J.W. Kim, A. Fernandez-Nieves, C.J. Martinez et al., Mater. Today 11, 18 (2008)CrossRefGoogle Scholar
  21. 21.
    S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee, Lab Chip 8, 198 (2008)CrossRefGoogle Scholar
  22. 22.
    R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Rep. Progr. Phys. 75, 016601 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    J.C. Baret, Lab Chip 12, 422 (2012)CrossRefGoogle Scholar
  24. 24.
    R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K.A. Riske, R. Lipowsky, J. Phys.: Condens. Matter 18, S1151 (2006)ADSGoogle Scholar
  25. 25.
    S. Teh, R. Khnouf, H. Fan, A. Lee, Biomicrofluidics 5, 44113 (2011)CrossRefGoogle Scholar
  26. 26.
    S. Deshpande, Y. Caspi, A.E. Meijering, C. Dekker, Nat. Commun. 7, (2016)Google Scholar
  27. 27.
    D. Discher, A. Eisenberg, Science 297, 967 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    D.E. Discher, F. Ahmed, Annu. Rev. Biomed. Eng. 8, 323 (2006)CrossRefGoogle Scholar
  29. 29.
    D.E. Discher, V. Ortiz, G. Srinivas, M.L. Klein, Y. Kim, D. Christian, S. Cai, P. Photos, F. Ahmed, Progr. Polym. Sci. 32, 838 (2007)CrossRefGoogle Scholar
  30. 30.
    E. Lorenceau, A. Utada, D. Link, Langmuir 21, 9183 (2005)CrossRefGoogle Scholar
  31. 31.
    H.C. Shum, J.W. Kim, D.A. Weitz, J. Am. Chem. Soc. 130, 9543 (2008)CrossRefGoogle Scholar
  32. 32.
    J. Thiele, A.R. Abate, H.C. Shum, S. Bachtler, S. Förster, D.A. Weitz, Small 6, 1723 (2010)CrossRefGoogle Scholar
  33. 33.
    Y. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E. Ingber, Annu. Rev. Biomed. Engin. 3, 335 (2001)CrossRefGoogle Scholar
  35. 35.
    Y.C. Tan, K. Hettiarachchi, M. Siu, Y.R. Pan, A.P. Lee, J. Am. Chem. Soc. 128, 5656 (2006)CrossRefGoogle Scholar
  36. 36.
    T. Foster, K.D. Dorfman, H.T. Davis, J. Colloid Interface Sci. 351, 140 (2010)CrossRefGoogle Scholar
  37. 37.
    A. Perro, C. Nicolet, J. Angly, S. Lecommandoux, J.F. Le Meins, A. Colin, Langmuir 27, 9034 (2011)CrossRefGoogle Scholar
  38. 38.
    S.H. Kim, H.C. Shum, J.W. Kim, J.C. Cho, D.A. Weitz, J. Am. Chem. Soc. 133, 15165 (2011)CrossRefGoogle Scholar
  39. 39.
    S.H. Kim, J. Nam, J.W. Kim, D.H. Kim, S.H. Han, D.a. Weitz, Lab Chip 13, 1351 (2013)CrossRefGoogle Scholar
  40. 40.
    K.Y.S. Huang, J.L. Bento, M.A. Stredney, O.J. Napoli, D.H. Adamson, Microfluidics Nanofluidics 18, 149 (2015)CrossRefGoogle Scholar
  41. 41.
    J.F. Le Meins, C. Schatz, S. Lecommandoux, O. Sandre, Mater. Today 16, 397 (2013)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Julien Petit
    • 1
  • Ingmar Polenz
    • 1
  • Jean-Christophe Baret
    • 2
  • Stephan Herminghaus
    • 1
  • Oliver Bäumchen
    • 1
  1. 1.Max Planck Institute for Dynamics and Self-Organization (MPIDS)GöttingenGermany
  2. 2.CNRSUniv. Bordeaux, CRPP, UPR8641PessacFrance

Personalised recommendations