Advertisement

Method to disperse lipids as aggregates in oil for bilayers production

Tips and Tricks

Abstract.

Several techniques to assemble artificial lipid bilayers involve the zipping of monolayers. Their efficiency is determined by the renewal of the saturated monolayers to be zipped and this proceeds by adsorption of lipids dispersed in oil as aggregates. The size of these lipids aggregates is a key parameter to ensure both the stability of the suspension and a fast release of lipids at the interface. We propose a new method inspired from the solvent-shifting nucleation process allowing to control and tune the lipid aggregates size and that improves the production of artificial membranes. It is simpler and faster than current methods starting from a dry lipid film, which are highly sensitive to environmental conditions. This method opens the route to bilayer production processes with new potentialities in membrane composition.

Graphical abstract

Keywords

Tips and Tricks 

References

  1. 1.
    H. Bayley, B. Cronin, A. Heron, M.A. Holden, W.L. Hwang, R. Syeda, J. Thompson, M. Wallace, Mol. Biosyst. 4, 1191 (2008)CrossRefGoogle Scholar
  2. 2.
    M.A. Czekalska, T.S. Kaminski, S. Jakiela, T.K. Sapra, H. Bayley, P. Garstecki, Lab on a chip 15, 541 (2014)CrossRefGoogle Scholar
  3. 3.
    G. Maglia, A.J. Heron, W.L. Hwang, M.A. Holden, E. Mikhailova, Q. Li, S. Cheley, H. Bayley, Nat. Nano. 4, 437 (2009)CrossRefGoogle Scholar
  4. 4.
    S.H. White, Biophys. J. 23, 337 (1978)CrossRefADSGoogle Scholar
  5. 5.
    S.H. White, The physical nature of planar bilayer membranes, Ion Channel Reconstitution, edited by Christopher Miller (Plenum Press, New York, 1986) pp. 3-34Google Scholar
  6. 6.
    D.L. Richmond, E.M. Schmid, S. Martens, J.C. Stachowiak, N. Liska, D.A. Fletcher, Proc. Natl. Acad. Sci. U.S.A. 108, 9431 (2011)CrossRefADSGoogle Scholar
  7. 7.
    J.C. Stachowiak, D.L. Richmond, T.H. Li, F. Brochard-Wyart, D.A. Fletcher, Lab on a chip 9, 2003 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Abkarian, E. Loiseau, G. Massiera, Soft Matter 7, 4610 (2011)CrossRefADSGoogle Scholar
  9. 9.
    S. Pautot, B.J. Frisken, J.X. Cheng, X.S. Xie, D.A. Weitz, Langmuir 19, 10281 (2003)CrossRefGoogle Scholar
  10. 10.
    S. Pautot, B.J. Frisken, D.A. Weitz, Proc. Natl. Acad. Sci. U.S.A. 100, 10718 (2003)CrossRefADSGoogle Scholar
  11. 11.
    S. Sugiura, T. Kuroiwa, T. Kagota, M. Nakajima, S. Sato, S. Mukataka, P. Walde, S. Ichikawa, Langmuir 24, 4581 (2008)CrossRefGoogle Scholar
  12. 12.
    A. Yamada, T. Yamanaka, T. Hamada, M. Hase, K. Yoshikawa, D. Baigl, Langmuir 22, 9824 (2006)CrossRefGoogle Scholar
  13. 13.
    S.A. Vitale, J.L. Katz, Langmuir 19, 4105 (2003)CrossRefGoogle Scholar
  14. 14.
    F. Ganachaud, J.L. Katz, Chem. Phys. Chem. 6, 209 (2005)Google Scholar
  15. 15.
    J. Texter, in Reactions and synthesis in Surfactant Systems, Surfactant Science series 100, edited by J. Texter (Marcel Dekker, New York, 2001) pp. 577-607Google Scholar
  16. 16.
    E. Lepeltier, C. Bourgaux, P. Couvreur, Adv. Drug Delivery Rev. 71, 86 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Aubry, F. Ganachaud, J.-P. Cohen Addad, B. Cabane, Langmuir 25, 1970 (2009)CrossRefGoogle Scholar
  18. 18.
    H. Möhwald, Handbook Biol. Phys. 1, 161 (1995)CrossRefGoogle Scholar
  19. 19.
    J. Li, R. Miller, H. Möhwald, Colloids Surf. A: Physicochem. Engin. Aspects 114, 113 (1996)CrossRefGoogle Scholar
  20. 20.
    R. Botet, J. Phys. Conf. Ser. 352, 012047 (2012)CrossRefADSGoogle Scholar
  21. 21.
    K.J. Ruschak, C.A. Miller, Ind. Eng. Chem. Fund. 11, 534 (1972)CrossRefGoogle Scholar
  22. 22.
    C.E. Mora-Huertas, H. Fessi, A. Elaissari, Int. J. Pharm. 385, 113 (2010)CrossRefGoogle Scholar
  23. 23.
    Y. Jiang, A. Lee, J. Chen, R. Mackinnon, Nature 422, 180 (2003)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratoire Charles CoulombUMR5221 CNRS-Université de MontpellierMontpellierFrance

Personalised recommendations