Water activity in lamellar stacks of lipid bilayers: “Hydration forces” revisited

  • R. Leite Rubim
  • B. B. Gerbelli
  • K. Bougis
  • C. L. Pinto de Oliveira
  • L. Navailles
  • F. Nallet
  • E. Andreoli de Oliveira
Regular Article

Abstract.

Water activity and its relationship with interactions stabilising lamellar stacks of mixed lipid bilayers in their fluid state are investigated by means of osmotic pressure measurements coupled with small-angle X-ray scattering. The (electrically neutral) bilayers are composed of a mixture in various proportions of lecithin, a zwitterionic phospholipid, and Simulsol, a non-ionic cosurfactant with an ethoxylated polar head. For highly dehydrated samples the osmotic pressure profile always exhibits the “classical” exponential decay as hydration increases but, depending on Simulsol to lecithin ratio, it becomes either of the “bound” or “unbound” types for more water-swollen systems. A simple thermodynamic model is used for interpreting the results without resorting to the celebrated but elusive “hydration forces”.

Graphical abstract

Keywords

Soft Matter: Self-organisation and Supramolecular Assemblies 

References

  1. 1.
    T. Gulik-Krzywicki, E. Rivas, V. Luzzati, J. Mol. Biol. 27, 303 (1967)CrossRefGoogle Scholar
  2. 2.
    D.M. LeNeveu, R.P. Rand, V.A. Parsegian, D. Gingell, Biophys. J. 18, 209 (1977)CrossRefGoogle Scholar
  3. 3.
    W. Helfrich, Z. Naturforsch 33a, 305 (1978)ADSGoogle Scholar
  4. 4.
    D.M. LeNeveu, R.P. Rand, V.A. Parsegian, Nature 259, 601 (1976)CrossRefADSGoogle Scholar
  5. 5.
    V.A. Parsegian, N. Fuller, R.P. Rand, Proc. Natl. Acad. Sci. U.S.A. 76, 2750 (1979)CrossRefADSGoogle Scholar
  6. 6.
    C.R. Safinya, D. Roux, G.S. Smith, S.K. Sinha, P. Dimon, N.A. Clark, A.-M. Bellocq, Phys. Rev. Lett. 57, 2718 (1986)CrossRefADSGoogle Scholar
  7. 7.
    T. Salditt, C. Li, A. Spaar, U. Mennicke, Eur. Phys. J. E 7, 105 (2002)CrossRefGoogle Scholar
  8. 8.
    F. Nallet, D. Roux, J. Prost, J. Phys. (Paris) 50, 3147 (1989)CrossRefGoogle Scholar
  9. 9.
    P. Richetti, P. Kékicheff, J.L. Parker, B.W. Ninham, Nature 346, 252 (1990)CrossRefADSGoogle Scholar
  10. 10.
    T. Pott, A. Colin, L. Navailles, D. Roux, Interface Sci. 11, 249 (2003)CrossRefGoogle Scholar
  11. 11.
    E. Andreoli de Oliveira, E.R. Teixeira da Silva, A. Février, É. Grelet, F. Nallet, L. Navailles, EPL 91, 28001 (2010)CrossRefADSGoogle Scholar
  12. 12.
    E.R. Teixeira da Silva, E. Andreoli de Oliveira, A. Février, F. Nallet, L. Navailles, Eur. Phys. J. E 34, 83 (2011)CrossRefGoogle Scholar
  13. 13.
    B.B. Gerbelli, R.L. Rubim, E.R. Silva, F. Nallet, L. Navailles, C.L.P. Oliveira, E.A. de Oliveira, Langmuir 29, 13717 (2013)CrossRefGoogle Scholar
  14. 14.
    K. Bougis, R. Leite Rubim, N. Ziane, J. Peyencet, A. Bentaleb, A. Février, C.L.P. Oliveira, E. Andreoli de Oliveira, L. Navailles, F. Nallet, Eur. Phys. J. E 38, 78 (2015)CrossRefGoogle Scholar
  15. 15.
    V. Luzzati, H. Mustacchi, A. Skoulios, F. Husson, Acta Crystallog. 13, 660 (1960)CrossRefGoogle Scholar
  16. 16.
    V. Luzzati, F. Husson, J. Cell Biol. 19, 207 (1962)CrossRefGoogle Scholar
  17. 17.
    F. Reiss-Husson, J. Mol. Biol. 25, 363 (1967)CrossRefGoogle Scholar
  18. 18.
    R. Lipowsky, S. Leibler, Phys. Rev. Lett. 56, 2541 (1986)CrossRefADSGoogle Scholar
  19. 19.
    R. Podgornik, V.A. Parsegian, Langmuir 8, 557 (1992)CrossRefGoogle Scholar
  20. 20.
    S.T. Milner, D. Roux, J. Phys. I 2, 1741 (1992)Google Scholar
  21. 21.
    D. Bücker, W. Wagner, J. Phys. Chem. Ref. Data 35, 205 (2006)CrossRefADSGoogle Scholar
  22. 22.
    J.C. Maxwell, Nature 10, 477 (1874)CrossRefADSGoogle Scholar
  23. 23.
    J.E. Mayer, J. Chem. Phys. 5, 67 (1937)CrossRefADSGoogle Scholar
  24. 24.
    J.E. Jones, Proc. R. Soc. London A 106, 463 (1924)CrossRefADSGoogle Scholar
  25. 25.
    J. Israelachvili, H. Wennerström, Langmuir 6, 873 (1990)CrossRefGoogle Scholar
  26. 26.
    J. Israelachvili, H. Wennerström, J. Phys. Chem. 96, 520 (1992)CrossRefGoogle Scholar
  27. 27.
    J. Israelachvili, H. Wennerström, Nature 379, 219 (1996)CrossRefADSGoogle Scholar
  28. 28.
    E. Sparr, H. Wennerström, Curr. Opin. Colloid Interface Sci. 16, 561 (2011)CrossRefGoogle Scholar
  29. 29.
    E. Schneck, F. Sedlmeier, R.R. Netz, Proc. Natl. Acad. Sci. U.S.A. 109, 14405 (2012)CrossRefADSGoogle Scholar
  30. 30.
    M. Kanduč, A. Schlaich, E. Schneck, R.R. Netz, Advances Colloid Interface Sci. 208, 142 (2014)CrossRefGoogle Scholar
  31. 31.
    S. Marčelja, N. Radić, Chem. Phys. Lett. 42, 129 (1976)CrossRefADSGoogle Scholar
  32. 32.
    G. Cevc, R. Podgornik, B. Zekš, Chem. Phys. Lett. 91, 193 (1982)CrossRefADSGoogle Scholar
  33. 33.
    J.W. Cahn, J.W. Hilliard, J. Chem. Phys. 28, 258 (1958)CrossRefADSGoogle Scholar
  34. 34.
    P. Richetti, L. Moreau, P. Barois, P. Kékicheff, Phys. Rev. E 54, 1749 (1996)CrossRefADSGoogle Scholar
  35. 35.
    V.A. Parsegian, T. Zemb, Curr. Opin. Colloid Interface Sci. 16, 618 (2011)CrossRefGoogle Scholar
  36. 36.
    P. Bauduin, T. Zemb, Curr. Opin. Colloid Interface Sci. 19, 9 (2014)CrossRefGoogle Scholar
  37. 37.
    S.H. Donaldson Jr., A. Royne, K. Kristiansen, M.V. Rapp, S. Das, M.A. Gebbie, D.W. Lee, P. Stock, M. Valtiner, J. Israelachvili, Langmuir 31, 2051 (2015)CrossRefGoogle Scholar
  38. 38.
    See, for instance, C. Kittel, H. Kroemer, in Thermal Physics, 2nd edition (W.H. Freeman and Co, New-York, 1980)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • R. Leite Rubim
    • 1
    • 2
  • B. B. Gerbelli
    • 1
  • K. Bougis
    • 1
    • 2
  • C. L. Pinto de Oliveira
    • 1
  • L. Navailles
    • 2
  • F. Nallet
    • 2
  • E. Andreoli de Oliveira
    • 1
  1. 1.Instituto de Física-GFCxUniversidade de São PauloSão PauloBrazil
  2. 2.Centre de recherche Paul-Pascal-CNRSUniversité de BordeauxPessacFrance

Personalised recommendations