The European Physical Journal E

, 38:117

# Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation

Regular Article

### Abstract.

We investigate microphase separation patterns on curved surfaces in three-dimensional space by numerically solving a nonlocal Cahn-Hilliard equation for diblock copolymers. In our model, a curved surface is implicitly represented as the zero level set of a signed distance function. We employ a discrete narrow band grid that neighbors the curved surface. Using the closest point method, we apply a pseudo-Neumann boundary at the boundary of the computational domain. The boundary treatment allows us to replace the Laplace-Beltrami operator by the standard Laplacian operator. In particular, we can apply standard finite difference schemes in order to approximate the nonlocal Cahn-Hilliard equation in the discrete narrow band domain. We employ a type of unconditionally stable scheme, which was introduced by Eyre, and use the Jacobi iterative to solve the resulting implicit discrete system of equations. In addition, we use the minimum number of grid points for the discrete narrow band domain. Therefore, the algorithm is simple and fast. Numerous computational experiments are provided to study microphase separation patterns for diblock copolymers on curved surfaces in three-dimensional space.

### Keywords

Soft Matter: Polymers and Polyelectrolytes

### References

1. 1.
I.P. Campbell, G.J. Lau, J.L. Feaver, M.P. Stoykovich, Macromolecules 45, 1587 (2012)
2. 2.
C. Singh, M. Goulian, A.J. Liu, G.H. Fredrickson, Macromolecules 27, 2974 (1994)
3. 3.
F. Liu, N. Goldenfeld, Phys. Rev. A 39, 4805 (1989)
4. 4.
R. Choksi, M.A. Peletier, J.F. Williams, SIAM J. Appl. Math. 69, 1712 (2009)
5. 5.
P. Tang, F. Qiu, H. Zhang, Y. Yang, Phys. Rev. E 72, 016710 (2005)
6. 6.
T. Baumgart, S.T. Hess, W.W. Webb, Nature 425, 821 (2003)
7. 7.
A.R. Bausch, M.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, D.A. Weitz, Science 299, 1716 (2003)
8. 8.
P. Sens, S.A. Safran, Eur. Phys. J. E 1, 237 (2000)
9. 9.
K. Binder, S. Puri, S.K. Das, J. Horbach, J. Stat. Phys. 138, 51 (2010)
10. 10.
G. Brown, A. Chakrabarti, J. Chem. Phys. 102, 1440 (1995)
11. 11.
K. Binder, J. Non-Equil. Thermodyn. 23, 1 (1998)
12. 12.
H. Xiang, K. Shin, T. Kim, S.I. Moon, T.J. McCarthy, T.P. Russell, Macromolecules 37, 5660 (2004)
13. 13.
R. Choksi, M. Maras, J.F. Williams, SIAM J. Appl. Dyn. Syst. 10, 1344 (2011)
14. 14.
M. Pinna, A.V. Zvelindovsky, Eur. Phys. J. B 85, 1 (2012)
15. 15.
D. Jeong, J. Shin, Y. Li, Y. Choi, J.-H. Jung, S. Lee, J. Kim, Curr. Appl. Phys. 14, 1263 (2014)
16. 16.
R. Choksi, X. Ren, J. Stat. Phys. 113, 151 (2003)
17. 17.
S.W. Sides, G.H. Fredrickson, Polymer 44, 5859 (2003)
18. 18.
S.W. Sides, B.J. Kim, E.J. Kramer, G.H. Fredrickson, Phys. Rev. Lett. 96, 250601 (2006)
19. 19.
K.O. Rasmussen, G. Kalosakas, J. Polym. Sci. Pol. Phys. 40, 1777 (2002)
20. 20.
H.D. Ceniceros, G.H. Fredrickson, Multiscale Model. Simul. 2, 452 (2004)
21. 21.
B. Shahriari, PhD thesis, Simon Fraser Univeristy (2010)Google Scholar
22. 22.
T.L. Chantawansri, A.W. Bosse, A. Hexemer, H.D. Ceniceros, C.J. García-Cervera, E.J. Kramer, G.H. Fredrickson, Phys. Rev. E 75, 031802 (2007)
23. 23.
I. Chavel, Eigenvalues in Riemannian Geometry, Vol. 115 (Academic Press, London, 1984)Google Scholar
24. 24.
C.B. Macdonald, S.J. Ruuth, J. Sci. Comput. 35, 219 (2008)
25. 25.
S. Osher, R.P. Fedkiw, J. Comput. Phys. 169, 463 (2001)
26. 26.
D.J. Eyre, in MRS Proceedings, Vol. 529 (Cambridge University Press, 1998) p. 39Google Scholar
27. 27.
I.N. Bronshtein, K.A. Semendyayev, Handbook of Mathematics, 3rd edition (Springer-Verlag, New York, 1997) p. 892Google Scholar
28. 28.
T. Ohta, K. Kawasaki, Macromolecules 19, 2621 (1986)
29. 29.
Y. Nishiura, I. Ohnishi, Phys. D 84, 31 (1995)
30. 30.
S. Puri, H.L. Frisch, J. Phys. A 27, 6027 (1994)
31. 31.
S. Glotzer, D. Stauffer, N. Jan, Phys. Rev. Lett. 72, 4109 (1994)
32. 32.
S. Glotzer, E.A. Di Marzio, M. Muthukumar, Phys. Rev. Lett. 74, 2034 (1995)
33. 33.
C.B. Macdonald, J. Brandman, S.J. Ruuth, J. Comput. Phys. 230, 7944 (2011)
34. 34.
J.B. Greer, J. Sci. Comput. 29, 321 (2006)
35. 35.
H.-K. Zhao, S. Osher, R. Fedkiw, in Proceedings of the IEEE Workshop on Variational and Level Set Methods, Washington, DC, 2001, edited by A.D. Williams (IEEE Comput. Soc., Los Alamitos, 2001) p. 194Google Scholar
36. 36.
H.-K. Zhao, S. Osher, B. Merriman, M. Kang, Comput. Vis. Image Und. 80, 295 (2000)