Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation

  • Darae Jeong
  • Junseok Kim
Regular Article


We investigate microphase separation patterns on curved surfaces in three-dimensional space by numerically solving a nonlocal Cahn-Hilliard equation for diblock copolymers. In our model, a curved surface is implicitly represented as the zero level set of a signed distance function. We employ a discrete narrow band grid that neighbors the curved surface. Using the closest point method, we apply a pseudo-Neumann boundary at the boundary of the computational domain. The boundary treatment allows us to replace the Laplace-Beltrami operator by the standard Laplacian operator. In particular, we can apply standard finite difference schemes in order to approximate the nonlocal Cahn-Hilliard equation in the discrete narrow band domain. We employ a type of unconditionally stable scheme, which was introduced by Eyre, and use the Jacobi iterative to solve the resulting implicit discrete system of equations. In addition, we use the minimum number of grid points for the discrete narrow band domain. Therefore, the algorithm is simple and fast. Numerous computational experiments are provided to study microphase separation patterns for diblock copolymers on curved surfaces in three-dimensional space.

Graphical abstract


Soft Matter: Polymers and Polyelectrolytes 


  1. 1.
    I.P. Campbell, G.J. Lau, J.L. Feaver, M.P. Stoykovich, Macromolecules 45, 1587 (2012)CrossRefADSGoogle Scholar
  2. 2.
    C. Singh, M. Goulian, A.J. Liu, G.H. Fredrickson, Macromolecules 27, 2974 (1994)CrossRefADSGoogle Scholar
  3. 3.
    F. Liu, N. Goldenfeld, Phys. Rev. A 39, 4805 (1989)CrossRefADSGoogle Scholar
  4. 4.
    R. Choksi, M.A. Peletier, J.F. Williams, SIAM J. Appl. Math. 69, 1712 (2009)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Tang, F. Qiu, H. Zhang, Y. Yang, Phys. Rev. E 72, 016710 (2005)CrossRefADSGoogle Scholar
  6. 6.
    T. Baumgart, S.T. Hess, W.W. Webb, Nature 425, 821 (2003)CrossRefADSGoogle Scholar
  7. 7.
    A.R. Bausch, M.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, D.A. Weitz, Science 299, 1716 (2003)CrossRefADSGoogle Scholar
  8. 8.
    P. Sens, S.A. Safran, Eur. Phys. J. E 1, 237 (2000)CrossRefGoogle Scholar
  9. 9.
    K. Binder, S. Puri, S.K. Das, J. Horbach, J. Stat. Phys. 138, 51 (2010)MATHCrossRefADSGoogle Scholar
  10. 10.
    G. Brown, A. Chakrabarti, J. Chem. Phys. 102, 1440 (1995)CrossRefADSGoogle Scholar
  11. 11.
    K. Binder, J. Non-Equil. Thermodyn. 23, 1 (1998)MATHCrossRefGoogle Scholar
  12. 12.
    H. Xiang, K. Shin, T. Kim, S.I. Moon, T.J. McCarthy, T.P. Russell, Macromolecules 37, 5660 (2004)CrossRefADSGoogle Scholar
  13. 13.
    R. Choksi, M. Maras, J.F. Williams, SIAM J. Appl. Dyn. Syst. 10, 1344 (2011)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Pinna, A.V. Zvelindovsky, Eur. Phys. J. B 85, 1 (2012)CrossRefGoogle Scholar
  15. 15.
    D. Jeong, J. Shin, Y. Li, Y. Choi, J.-H. Jung, S. Lee, J. Kim, Curr. Appl. Phys. 14, 1263 (2014)CrossRefADSGoogle Scholar
  16. 16.
    R. Choksi, X. Ren, J. Stat. Phys. 113, 151 (2003)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    S.W. Sides, G.H. Fredrickson, Polymer 44, 5859 (2003)CrossRefGoogle Scholar
  18. 18.
    S.W. Sides, B.J. Kim, E.J. Kramer, G.H. Fredrickson, Phys. Rev. Lett. 96, 250601 (2006)CrossRefADSGoogle Scholar
  19. 19.
    K.O. Rasmussen, G. Kalosakas, J. Polym. Sci. Pol. Phys. 40, 1777 (2002)CrossRefADSGoogle Scholar
  20. 20.
    H.D. Ceniceros, G.H. Fredrickson, Multiscale Model. Simul. 2, 452 (2004)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    B. Shahriari, PhD thesis, Simon Fraser Univeristy (2010)Google Scholar
  22. 22.
    T.L. Chantawansri, A.W. Bosse, A. Hexemer, H.D. Ceniceros, C.J. García-Cervera, E.J. Kramer, G.H. Fredrickson, Phys. Rev. E 75, 031802 (2007)CrossRefADSGoogle Scholar
  23. 23.
    I. Chavel, Eigenvalues in Riemannian Geometry, Vol. 115 (Academic Press, London, 1984)Google Scholar
  24. 24.
    C.B. Macdonald, S.J. Ruuth, J. Sci. Comput. 35, 219 (2008)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Osher, R.P. Fedkiw, J. Comput. Phys. 169, 463 (2001)MATHMathSciNetCrossRefADSGoogle Scholar
  26. 26.
    D.J. Eyre, in MRS Proceedings, Vol. 529 (Cambridge University Press, 1998) p. 39Google Scholar
  27. 27.
    I.N. Bronshtein, K.A. Semendyayev, Handbook of Mathematics, 3rd edition (Springer-Verlag, New York, 1997) p. 892Google Scholar
  28. 28.
    T. Ohta, K. Kawasaki, Macromolecules 19, 2621 (1986)CrossRefADSGoogle Scholar
  29. 29.
    Y. Nishiura, I. Ohnishi, Phys. D 84, 31 (1995)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    S. Puri, H.L. Frisch, J. Phys. A 27, 6027 (1994)MATHCrossRefADSGoogle Scholar
  31. 31.
    S. Glotzer, D. Stauffer, N. Jan, Phys. Rev. Lett. 72, 4109 (1994)CrossRefADSGoogle Scholar
  32. 32.
    S. Glotzer, E.A. Di Marzio, M. Muthukumar, Phys. Rev. Lett. 74, 2034 (1995)CrossRefADSGoogle Scholar
  33. 33.
    C.B. Macdonald, J. Brandman, S.J. Ruuth, J. Comput. Phys. 230, 7944 (2011)MATHMathSciNetADSGoogle Scholar
  34. 34.
    J.B. Greer, J. Sci. Comput. 29, 321 (2006)MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    H.-K. Zhao, S. Osher, R. Fedkiw, in Proceedings of the IEEE Workshop on Variational and Level Set Methods, Washington, DC, 2001, edited by A.D. Williams (IEEE Comput. Soc., Los Alamitos, 2001) p. 194Google Scholar
  36. 36.
    H.-K. Zhao, S. Osher, B. Merriman, M. Kang, Comput. Vis. Image Und. 80, 295 (2000)MATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of MathematicsKorea UniversitySeoulRepublic of Korea

Personalised recommendations