Dynamic Landau theory for supramolecular self-assembly

  • Nitin S. Tiwari
  • Koen Merkus
  • Paul van der Schoot
Open Access
Regular Article

Abstract

Although pathway-specific kinetic theories are fundamentally important to describe and understand reversible polymerisation kinetics, they come in principle at a cost of having a large number of system-specific parameters. Here, we construct a dynamical Landau theory to describe the kinetics of activated linear supramolecular self-assembly, which drastically reduces the number of parameters and still describes most of the interesting and generic behavior of the system in hand. This phenomenological approach hinges on the fact that if nucleated, the polymerisation transition resembles a phase transition. We are able to describe hysteresis, overshooting, undershooting and the existence of a lag time before polymerisation takes off, and pinpoint the conditions required for observing these types of phenomenon in the assembly and disassembly kinetics. We argue that the phenomenological kinetic parameter in our theory is a pathway controller, i.e., it controls the relative weights of the molecular pathways through which self-assembly takes place.

Graphical abstract

Keywords

Soft Matter: Self-organisation and Supramolecular Assemblies 

References

  1. 1.
    T.F.A. De Greef, M.M.J. Smulders, M. Wolffs, A.P.H.J. Schenning, R.P. Sijbesma, E.W. Meijer, Chem. Rev. 109, 5687 (2009).CrossRefGoogle Scholar
  2. 2.
    F. Oosawa, S. Asakura, Thermodynamics of the Polymerization of Protein (Academic Press, New York, 1975).Google Scholar
  3. 3.
    A. Lomakin, D.S. Chung, G.B. Benedek, D.A. Kirschner, D.B. Teplow, Proc. Natl. Acad. Sci. U.S.A. 93, 1125 (1996).CrossRefADSGoogle Scholar
  4. 4.
    R. Koopmans (Editors), Engineering aspects of self-organising materials (Elsevier, Amsterdam, 2009).Google Scholar
  5. 5.
    C. Thomas, F. Peruch, B. Bibal, RSC Adv. 2, 12851 (2012).CrossRefGoogle Scholar
  6. 6.
    S.C. Greer, Annu. Rev. Phys. Chem. 53, 173 (2002).CrossRefADSGoogle Scholar
  7. 7.
    A.V. Tobolsky, A. Eisenberg, J. Am. Chem. Soc. 82, 289 (1960).CrossRefGoogle Scholar
  8. 8.
    J.C. Wheeler, P. Pfeuty, Phys. Rev. A 24, 1050 (1981).MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    W. Wurthner, Z. Chen, . Houben, C. You, P. Jonkheijm, J. van Herrithuyzen, A. Schenning, P. van der Schoot, E. Meijer, E. Beckers, E. Meskers, R. Janssen, J. Am. Chem. Soc. 126, 10611 (2004).CrossRefGoogle Scholar
  10. 10.
    M. Smulders, P. van der Schoot, A. Schenning, E. Meijer, Chem. Eur. J. 16, 362 (2010).CrossRefGoogle Scholar
  11. 11.
    P. Joenkheijm P. van der Schoot, A. Schenning, E.W. Meijer, Science 313, 80 (2006).CrossRefADSGoogle Scholar
  12. 12.
    B. Isare, M. Linares, L. Zargarian, S. Fermandjian, M. Miura, S. Motohashi, N. Vanthuyne, R. Lazzaroni, L. Bouteiller, Chem. Eur. J. 16, 173 (2010).CrossRefGoogle Scholar
  13. 13.
    L. Bouteiller, P. van der Schoot, J. Am. Chem. Soc. 134, 1363 (2012).CrossRefGoogle Scholar
  14. 14.
    L.J. Prins, P. Timmerman, D.N. Reinhoudt, J. Am. Chem. Soc. 123, 10153 (2001).CrossRefGoogle Scholar
  15. 15.
    P. Janssen, S. Jabbari-Farouji, M. Surin, X. Vila, J. Gielen, T. de Greef, M. Vos, P. Bomans, N. Sommerdijk, P. Christianen, P. Leclere, R. Lazzaroni, P. van der Schoot, E. Meijer, A. Schenning, J. Am. Chem. Soc. 131, 1222 (2009).CrossRefGoogle Scholar
  16. 16.
    S. Jabbari-Farouji, P. van der Schoot, J. Chem. Phys. 137, 064906 (2012).CrossRefADSGoogle Scholar
  17. 17.
    J. van Gestel, P. van der Schoot, M.A. J Michels, Langmuir 20, 1375 (2003).CrossRefGoogle Scholar
  18. 18.
    M.E. Cates, S.J. Candau, J. Phys.: Condens. Matter 2, 6869 (1990).ADSGoogle Scholar
  19. 19.
    M.E. Cates, Macromolecules 20, 2289 (1987).CrossRefADSGoogle Scholar
  20. 20.
    M.S. Turner, M.E. Cates, J. Phys. (Paris) 51, 307 (1990).CrossRefGoogle Scholar
  21. 21.
    M.S. Turner, C. Marques, M.E. Cates, Langmuir 9, 695 (1993).CrossRefGoogle Scholar
  22. 22.
    C.M. Marques, M.S. Turner, M.E. Cates, J. Non-Cryst. Solids 172-173, 1168 (1994).CrossRefADSGoogle Scholar
  23. 23.
    S.I.A. Cohen, M. Vendruscolo, C.M. Dobson, E.M. Terentjev, T.P.J. Knowles, J. Chem. Phys. 135, 065105 (2011).CrossRefADSGoogle Scholar
  24. 24.
    S.I.A. Cohen, M. Vendruscolo, C.M. Dobson, T.P.J. Knowles, J. Chem. Phys. 135, 065106 (2011).CrossRefADSGoogle Scholar
  25. 25.
    S.I.A. Cohen, M. Vendruscolo, C.M. Dobson, T.P.J. Knowles, J. Chem. Phys. 135, 065107 (2011).CrossRefADSGoogle Scholar
  26. 26.
    J. van Jaarsveld, P. van der Schoot, Macromolecules 40, 2177 (2007).CrossRefADSGoogle Scholar
  27. 27.
    J.L.A. Dubbeldam, P. van der Schoot, J. Chem. Phys. 123, 144912 (2005).CrossRefADSGoogle Scholar
  28. 28.
    A. Ciferri (Editor), Supramolecular polymers, 2nd edition (Taylor and Frances, Boca Raton, 2005).Google Scholar
  29. 29.
    J. van Jaarsveld, P. van der Schoot, Macromolecules 40, 2177 (2007).CrossRefADSGoogle Scholar
  30. 30.
    C. Schaefer, I.K. Voets, A.R.A. Palmans, E.W. Meijer, P. van der Schoot, P. Besenius, ACS Macro Lett. 1, 830 (2012).CrossRefGoogle Scholar
  31. 31.
    J. Dudowicz, K.F. Freed, J.F. Douglas, J. Chem. Phys. 111, 7116 (1999).CrossRefADSGoogle Scholar
  32. 32.
    F.J. Brooks, A.E. Carlsson, Biophys. J. 95, 1050 (2008).CrossRefGoogle Scholar
  33. 33.
    E.J. Hinch, Perturbation methods (Cambridge University Press, 1991).Google Scholar
  34. 34.
    R.D. Gunning, C.O. Sullivan, K.M. Ryan, Phys. Chem. Chem. Phys. 12, 12430 (2010).CrossRefGoogle Scholar
  35. 35.
    W.M. Gelbart, W.E. McMullen1, A. Ben-Shaul, J. Phys. (Paris) 46, 1137 (1985).CrossRefGoogle Scholar
  36. 36.
    S. Belli, A. Patti, M. Dijkstra, R. van Roij, Phys. Rev. Lett. 107, 148303 (2011).CrossRefADSGoogle Scholar
  37. 37.
    P.D. Olmsted, C.Y.D. Lu, Phys. Rev. E 56, R55 (1997).CrossRefADSGoogle Scholar
  38. 38.
    J.L. Goveas, P.D. Olmsted, Eur. Phys. J. E 6, 79 (2001).CrossRefGoogle Scholar
  39. 39.
    P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977).CrossRefADSGoogle Scholar
  40. 40.
    S.I.A. Cohen, M. Vendruscolo, C.M. Dobson, T.P.J. Knowles, Int. J. Mol. Sci. 12, 5844 (2011).CrossRefGoogle Scholar
  41. 41.
    T.M. Schuster, R.B. Scheele, M.L. Adams, S.J. Shire, J.J. Steckert, M. Potschka, Biophys. J. 32, 313 (1980).CrossRefADSGoogle Scholar
  42. 42.
    B.O. Shaughnessy, D. Vavylonis, Eur. Phys. J. E 12, 481 (2003).CrossRefGoogle Scholar
  43. 43.
    A.N. Semenov, I.A. Nyrkova, J. Chem. Phys. 134, 114902 (2011).CrossRefADSGoogle Scholar
  44. 44.
    I.A. Nyrkova, A.N. Semenov, Eur. Phys. J. E 24, 167 (2007).CrossRefGoogle Scholar
  45. 45.
    A. Aggeli, I.A. Nyrkova, M. Bell, R. Harding, L. Carrick, T.C.B. McLeish, A.N. Semenov, N. Boden, Proc. Natl. Acad. Sci. U.S.A. 98, 11857 (2001).CrossRefADSGoogle Scholar
  46. 46.
    E. Hellstrand, B. Boland, D.M. Walsh, S. Linse, ACS Chem. Neurosci. 1, 13 (2010).CrossRefGoogle Scholar
  47. 47.
    S.I.A. Cohen, M. Vendruscolo, C.M. Dobson, T.P.J. Knowles, J. Mol. Biol. 421, 160 (2012).CrossRefGoogle Scholar
  48. 48.
    M. Ahart, A. Hushur, Y. Bing, Z-G. Ye, R.J. Hemley, S. Kojima, Appl. Phys. Lett. 94, 142906 (2009).CrossRefADSGoogle Scholar
  49. 49.
    G.A. Garcia, S.I.A. Cohen, C.M. Dobson, T.P.J. Knowles, Phys. Rev. E 89, 032712 (2014).CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Nitin S. Tiwari
    • 1
  • Koen Merkus
    • 1
  • Paul van der Schoot
    • 1
    • 2
  1. 1.Department of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Institute for Theoretical PhysicsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations