Skip to main content
Log in

Cavity averages for hard spheres in the presence of polydispersity and incomplete data

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We develop a cavity-based method which allows to extract thermodynamic properties from position information in hard-sphere/disk systems. So far, there are available-volume and free-volume methods. We add a third one, which we call available volume after take-out, and which is shown to be mathematically equivalent to the others. In applications, where data sets are finite, all three methods show limitations, and they do this in different parameter ranges. We illustrate the principal equivalence and the limitations on data from molecular dynamics: In particular, we test robustness against missing data. We have in mind experimental limitations where there is a small polydispersity, say 4% in the particle radii, but individual radii cannot be determined. We observe that, depending on the used method, the errors in such a situation are easily 100% for the pressure and 10kT for the chemical potentials. Our work is meant as guideline to the experimentalists for choosing the right one of the three methods, in order to keep the outcome of experimental data analysis meaningful.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V.J. Anderson, H.N.W. Lekkerkerker, Nature 416, 811 (2002).

    Article  ADS  Google Scholar 

  2. A. van Blaaderen, P. Wiltzius, Science 270, 1177 (1995).

    Article  ADS  Google Scholar 

  3. W.K. Kegel, A. van Blaaderen, Science 14, 290 (2000).

    Article  ADS  Google Scholar 

  4. C.P. Royall, W.C.K. Poon, E.R. Weeks, Soft Matter 9, 17 (2013).

    Article  ADS  Google Scholar 

  5. P.J. Yunker, K. Chen, M.D. Gratale, M.A. Lohr, T. Still, A.G. Yodh, Rep. Prog. Phys. 77, 056601 (2014).

    Article  ADS  Google Scholar 

  6. K. Zahn, A. Wille, G. Maret, S. Sengupta, P. Nielaba, Phys. Rev. Lett. 90, 155506 (2003).

    Article  ADS  Google Scholar 

  7. T. Still, C.P. Goodrich, K. Chen, P.J. Yunker, S. Schoenholz, A.J. Liu, A.G. Yodh, Phys. Rev. E 89, 012301 (2014).

    Article  ADS  Google Scholar 

  8. B. Liu, T.H. Besseling, M. Hermes, A.F. Demirörs, A. Imhof, A. van Blaaderen, Nat. Commun. 5, 3092 (2014).

    ADS  Google Scholar 

  9. J. Taffs, S.R. Williams, H. Tanaka, C.P. Royall, Soft Matter 9, 297 (2013).

    Article  ADS  Google Scholar 

  10. A. Ghosh, R. Mari, V.K. Chikkadi, P. Schall, A.C. Maggs, D. Bonn, Physica A 390, 3061 (2011).

    Article  ADS  Google Scholar 

  11. J. Baumgartl, R.P.A. Dullens, M. Dijkstra, R. Roth, C. Bechinger, Phys. Rev. Lett. 98, 198303 (2007).

    Article  ADS  Google Scholar 

  12. R. Dreyfus, Y. Xu, T. Still, L.A. Hough, A.G. Yodh, S. Torquato, Phys. Rev. E 91, 012302 (2015).

    Article  ADS  Google Scholar 

  13. R. Zargar, J. Russo, P. Schall, H. Tanaka, D. Bonn, EPL 108, 38002 (2014).

    Article  ADS  Google Scholar 

  14. R. Zargar, B. Nienhuis, P. Schall, D. Bonn, Phys. Rev. Lett. 110, 258301 (2013).

    Article  ADS  Google Scholar 

  15. C.L. Klix, F. Ebert, F. Weysser, M. Fuchs, G. Maret, P. Keim, Phys. Rev. Lett. 109, 178301 (2012).

    Article  ADS  Google Scholar 

  16. V. Chikkadi, P. Schall, Phys. Rev. E 85, 031402 (2012).

    Article  ADS  Google Scholar 

  17. A. Ghosh, V. Chikkadi, P. Schall, D. Bonn, Phys. Rev. Lett. 107, 188303 (2011).

    Article  ADS  Google Scholar 

  18. H.L. Schöpe, O. Marnette, W. van Megen, G. Bryant, Langmuir 23, 11534 (2007).

    Article  Google Scholar 

  19. W.C.K. Poon, E.R. Weeks, C.P. Royall, Soft Matter 8, 21 (2012).

    Article  ADS  Google Scholar 

  20. B. Widom, J. Chem. Phys. 39, 2808 (1963).

    Article  ADS  Google Scholar 

  21. R.J. Speedy, J. Chem. Soc., Faraday Trans. 2 76, 693 (1980).

    Article  Google Scholar 

  22. W.G. Hoover, W.T. Ashurst, R. Grover, J. Chem. Phys. 57, 1259 (1972).

    Article  ADS  Google Scholar 

  23. J.G. Kirkwood, J. Chem. Phys. 18, 380 (1950).

    Article  ADS  Google Scholar 

  24. W.W. Wood, J. Chem. Phys. 20, 1334 (1952).

    Article  ADS  Google Scholar 

  25. R.J. Speedy, J. Chem. Soc., Faraday Trans. 2 77, 329 (1981).

    Article  Google Scholar 

  26. R.J. Speedy, J. Phys. Chem. 92, 2016 (1988).

    Article  Google Scholar 

  27. R.J. Speedy, H. Reiss, Mol. Phys. 72, 999 (1991).

    Article  ADS  Google Scholar 

  28. D.S. Corti, R.K. Bowles, Mol. Phys. 96, 1623 (1999).

    Article  ADS  Google Scholar 

  29. S. Sastry, D.S. Corti, P.G. Debenedetti, F.H. Stillinger, Phys. Rev. E 56, 5524 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Sastry, T.M. Truskett, P.G. Debenedetti, S. Torquato, F.H. Stillinger, Mol. Phys. 95, 289 (1998).

    Article  ADS  Google Scholar 

  31. M. Maiti, A. Lakshminarayanan, S. Sastry, Eur. Phys. J. E 36, 5 (2013).

    Article  Google Scholar 

  32. M. Maiti, S. Sastry, J. Chem. Phys. 141, 044510 (2014).

    Article  ADS  Google Scholar 

  33. K. Chen, T. Still, S. Schoenholz, K.B. Aptowicz, M. Schindler, A.C. Maggs, A.J. Liu, A.G. Yodh, Phys. Rev. E 88, 022315 (2013).

    Article  ADS  Google Scholar 

  34. R.K. Bowles, R.J. Speedy, Mol. Phys. 83, 113 (1994).

    Article  ADS  Google Scholar 

  35. R.J. Speedy, H. Reiss, Mol. Phys. 72, 1015 (1991).

    Article  ADS  Google Scholar 

  36. D.C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd edition (Cambridge University Press, Cambridge, UK, 2004).

  37. D. Forster, Hydrodynamic fluctuations, broken symmetry, and correlation functions (Addison-Wesley, 1990).

  38. M. Schindler, Chem. Phys. 375, 327 (2010).

    Article  ADS  Google Scholar 

  39. SklogWiki, http://www.sklogwiki.org/SklogWiki/index.php/Hard_sphere:_virial_coefficients (23 July 2015).

  40. N. Clisby, B.M. McCoy, J. Stat. Phys. 122, 15 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. B.J. Gellatly, J.L. Finney, J. Non-Cryst. Solids 50, 313 (1982).

    Article  ADS  Google Scholar 

  42. M. Caroli, P.M.M. de Castro, S. Loriot, O. Rouiller, M. Teillaud, C. Wormser, Robust and Efficient Delaunay Triangulations of Points on or Close to a Sphere, in 9th International Symposium on Experimental Algorithms (2010), Vol. 6049 of Lecture Notes in Computer Science (Springer, Berlin, 2010) pp. 462--473.

  43. CGAL 4.6, Computational Geometry Algorithms Library, http://www.cgal.org (2015).

  44. M. Caroli, M. Teillaud, Computing 3D Periodic Triangulations, in Proceedings 17th European Symposium on Algorithms (2009), Vol. 5757 of Lecture Notes in Computer Science (Springer, Berlin, 2009) pp. 59--70.

  45. M. Yvinec, in CGAL User and Reference Manual (CGAL Editorial Board, 2015), 4.6 edition, http://doc.cgal.org/4.6/Manual/packages.html#PkgTriangulation2Summary.

  46. N. Kruithof, in CGAL User and Reference Manual (CGAL Editorial Board, 2015), 4.6 edition, http://doc.cgal.org/4.6/Manual/packages.html#PkgPeriodic2Triangulation2Summary.

  47. N.P. Dolbilin, D.H. Huson, Period. Math. Hung. 34, 57 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  48. http://www.pct.espci.fr/~michael/.

  49. R.P.A. Dullens, W.K. Kegel, D.G.A.L. Aarts, Oil, Gas Sci. Technol. Rev. IFP 3, 295 (2008).

    Article  Google Scholar 

  50. R. Zargar, D. Bonn, private communication.

  51. K. Chen, G. Ellenbroek, Z. Zhang, D. Chen, P. Yunker, S. Henkes, C. Brito, O. Dauchot, W. Sarloos, A. Liu et al., Phys. Rev. Lett. 105, 025501 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schindler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schindler, M., Maggs, A.C. Cavity averages for hard spheres in the presence of polydispersity and incomplete data. Eur. Phys. J. E 38, 97 (2015). https://doi.org/10.1140/epje/i2015-15097-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15097-0

Keywords

Navigation