Advertisement

Contribution to the benchmark for ternary mixtures: Measurement of diffusion and Soret coefficients in 1,2,3,4-tetrahydronaphthalene, isobutylbenzene, and dodecane onboard the ISS

  • Oleg A. Khlybov
  • Ilya I. Ryzhkov
  • Tatyana P. Lyubimova
Regular Article
Part of the following topical collections:
  1. Thermal non-equilibrium phenomena in multi-component fluids

Abstract

The paper is devoted to processing the data of DCMIX 1 space experiment. In this experiment, the Optical digital interferometry was used to measure the diffusion and Soret coefficients in the ternary mixture of 1,2,3,4-tetrahydronaphthalene, isobutylbenzene and n-dodecane at mass fractions of 0.8/0.1/0.1 and at 25°C. The raw interferometric images were processed to obtain the temporal and spatial evolution of refractive indices for two laser beams of different wavelengths. The method for extracting the diffusion and thermal diffusion coefficients originally developed for optical beam deflection was extended to optical digital interferometry allowing for the spatial variation of refractive index along the diffusion path. The method was validated and applied to processing the data for Soret and diffusion steps in 5 experimental runs. The obtained results for the Soret coefficients and one of the eigenvalues of diffusion matrix showed acceptable agreement within each step. The second eigenvalue was not determined with sufficient accuracy.

Graphical abstract

Keywords

Topical Issue: Thermal non-equilibrium phenomena in multi-component fluids 

References

  1. 1.
    K. Ghorayeb, A. Firoozabadi, T. Anraku, SPE J. 8, 114 (2003).CrossRefGoogle Scholar
  2. 2.
    S. Wiegand, J. Phys.: Condens. Matter. 16, 357 (2004).ADSGoogle Scholar
  3. 3.
    A. Mialdun, V.M. Shevtsova, J. Chem. Phys. 134, 044524 (2011).CrossRefADSGoogle Scholar
  4. 4.
    V.M. Buzmakov, A.Yu. Pinyagin, A.F. Pshenichnikov, J. Eng. Phys. Thermophys. 44, 529 (1983).CrossRefGoogle Scholar
  5. 5.
    I. Ryzhkov, Fluid Dyn. 48, 477 (2013).CrossRefADSMATHGoogle Scholar
  6. 6.
    R. Monti (Editor), Physics of Fluids in Microgravity (Taylor & Francis, London, 2001).Google Scholar
  7. 7.
    Q. Kemao, Opt. Lasers Eng. 45, 304 (2007).CrossRefGoogle Scholar
  8. 8.
    L. Huang et al., Opt. Lasers Eng. 48, 141 (2010).CrossRefGoogle Scholar
  9. 9.
    D. Ghiglia, M. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithm, and Software (Wiley, 1998).Google Scholar
  10. 10.
    A. Pati, P. Rastogi, Opt. Lasers Eng. 43, 475 (2005).CrossRefGoogle Scholar
  11. 11.
    K.B Haugen, A. Firoozabadi, J. Phys. Chem. B. 110, 17678 (2006).CrossRefGoogle Scholar
  12. 12.
    A.D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists (CRC Press, 2001).Google Scholar
  13. 13.
    A. Mialdun, V.M. Shevtsova, Int. J. Heat Mass Transf. 51, 3164 (2008).CrossRefMATHGoogle Scholar
  14. 14.
    A.J. Nelder, R. Mead, Comput. J. 7, 308 (1965).CrossRefMATHGoogle Scholar
  15. 15.
    V. Shevtsova, V. Sechenyh, A. Nepomnyashchy, J.C. Legros, Philos. Mag. 91, 3498 (2011).CrossRefADSGoogle Scholar
  16. 16.
    A. Königer, H. Wunderlich, W. Köhler, J. Chem. Phys. 132, 174506 (2010).CrossRefADSGoogle Scholar
  17. 17.
    V.V. Sechenyh, J.C. Legros, V. Shevtsova, J. Chem. Thermodyn. 62, 64 (2013).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Oleg A. Khlybov
    • 1
  • Ilya I. Ryzhkov
    • 2
  • Tatyana P. Lyubimova
    • 1
  1. 1.Institute of Continuous Media MechanicsUB RASPermRussia
  2. 2.Institute of Computational ModellingSB RASAkademgorodokKrasnoyarsk, Russia

Personalised recommendations