Bond lifetime and diffusion coefficient in colloids with short-range interactions

Regular Article

Abstract

We use molecular dynamics simulations to study the influence of short-range structures in the interaction potential between hard-sphere-like colloidal particles. Starting from model potentials and effective potentials in binary mixtures computed from the Ornstein-Zernike equations, we investigate the influence of the range and strength of a possible tail beyond the usual core repulsion or the presence of repulsive barriers. The diffusion coefficient and mean “bond” lifetimes are used as indicators of the effect of this structure on the dynamics. The existence of correlations between the variations of these quantities with the physical parameters is discussed to assess the interpretation of dynamics slowing down in terms of long-lived bonds. We also discuss the question of a universal behaviour determined by the second virial coefficient B (2) and the interplay of attraction and repulsion. While the diffusion coefficient follows the B (2) law for purely attractive tails, this is no longer true in the presence of repulsive barriers. Furthermore, the bond lifetime shows a dependence on the physical parameters that differs from that of the diffusion coefficient. This raises the question of the precise role of bonds on the dynamics slowing down in colloidal gels.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    P.N. Pusey, W. van Megen, Nature 320, 340 (1986).CrossRefADSGoogle Scholar
  2. 2.
    K. Dawson, Curr. Opin. Colloid Interface Sci. 7, 218 (2002).CrossRefGoogle Scholar
  3. 3.
    J. Bergenholtz, M. Fuchs, Phys. Rev. E 59, 5706 (1999).CrossRefADSGoogle Scholar
  4. 4.
    J. Bergenholtz, M. Fuchs, J. Phys.: Condens. Matter 11, 10171 (1999).ADSGoogle Scholar
  5. 5.
    K.A. Dawson, G. Foffi, F. Sciortino, P. Tartaglia, E. Zaccarelli, J. Phys.: Condens. Matter 13, 9113 (2001).ADSGoogle Scholar
  6. 6.
    K.N. Pham et al., Science 296, 104 (2002).CrossRefADSGoogle Scholar
  7. 7.
    K.N. Pham, S.U. Egelhaaf, P.N. Pusey, W.C.K. Poon, Phys. Rev. E 69, 011503 (2004).CrossRefADSGoogle Scholar
  8. 8.
    J. Bergenholtz, W.C.K. Poon, M. Fuchs, Langmuir 19, 4493 (2003).CrossRefGoogle Scholar
  9. 9.
    B. Ahlstrom, J. Bergenholtz, J. Phys.: Condens. Matter 19, 036102 (2007).ADSGoogle Scholar
  10. 10.
    E. Zaccarelli, J. Phys.: Condens. Matter 19, 323101 (2007).Google Scholar
  11. 11.
    P.J. Lu, E. Zaccarelli, F. Ciulla, A.B. Schofield, F. Sciortino, D.A. Weitz, Nature 453, 499 (2008).CrossRefADSGoogle Scholar
  12. 12.
    E. Zaccarelli, G. Foffi, K.A. Dawson, F. Sciortino, P. Tartaglia, Phys. Rev. E 63, 031501 (2001).CrossRefADSGoogle Scholar
  13. 13.
    G. Foffi, K.A. Dawson, S.V. Buldyrev, F. Sciortino, E. Zaccarelli, P. Tartaglia, Phys. Rev. E 65, 050802(R) (2002).CrossRefADSGoogle Scholar
  14. 14.
    E. Zaccarelli, G. Foffi, K.A. Dawson, S.V. Buldyrev, F. Sciortino, P. Tartaglia, Phys. Rev. E 66, 041402 (2002).CrossRefADSGoogle Scholar
  15. 15.
    Emanuela Zaccarelli, Francesco Sciortino, Piero Tartaglia, J. Phys.: Condens. Matter 16, S4849 (2004).Google Scholar
  16. 16.
    A.M. Puertas, M. Fuchs, M.E. Cates, Phys. Rev. Lett. 88, 098301 (2002).CrossRefADSGoogle Scholar
  17. 17.
    A.M. Puertas, M. Fuchs, M.E. Cates, Phys. Rev. E 67, 031406 (2003).CrossRefADSGoogle Scholar
  18. 18.
    Y.L. Chen, K.S. Schweizer, J. Chem. Phys. 120, 7212 (2004).CrossRefADSGoogle Scholar
  19. 19.
    G. Foffi, F. Sciortino, Phys. Rev. E 74, 050401(R) (2006).CrossRefADSGoogle Scholar
  20. 20.
    G. Foffi, C. De Michele, F. Sciortino, P. Tartaglia, Phys. Rev. Lett. 94, 078301 (2005).CrossRefADSGoogle Scholar
  21. 21.
    M. Noro, D. Frenkel, J. Chem. Phys. 113, 2941 (2000).CrossRefADSGoogle Scholar
  22. 22.
    W. Götze, in Liquids, Freezing and Glass Transition, edited by J.-P. Hansen, D. Levesque, J. Zinn-Justin (North-Holland, Amserdam, 1991) p. 287.Google Scholar
  23. 23.
    G. Szamel, H. Löwen, Phys. Rev. A 44, 8215 (1991).CrossRefADSGoogle Scholar
  24. 24.
    R.J. Maldonado, M. Medina-Noyola, Phys. Rev. E 77, 051503 (2008).CrossRefADSGoogle Scholar
  25. 25.
    P. Ramírez-González, M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010).CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    F. Sciortino et al., Comput. Phys. Commun. 169, 166 (2005).CrossRefADSGoogle Scholar
  27. 27.
    F. Sciortino, Eur. Phys. J. B 64, 505 (2008).CrossRefADSGoogle Scholar
  28. 28.
    F. Sciortino, E. Zaccarelli, Curr. Opin. Solid State Mater. Sci. 15, 246 (2011).CrossRefADSGoogle Scholar
  29. 29.
    A. Giacometti, F. Lado, J. Largo, G. Pastore, F. Sciortino, J. Chem. Phys. 131, 174114 (2009).CrossRefADSGoogle Scholar
  30. 30.
    A. Giacometti, F. Lado, J. Largo, G. Pastore, F. Sciortino, J. Chem. Phys. 132, 174110 (2010).CrossRefADSGoogle Scholar
  31. 31.
    Ph. Germain, S. Amokrane, Phys. Rev. Lett. 102, 058301 (2009).CrossRefADSGoogle Scholar
  32. 32.
    Ph. Germain, J. Chem. Phys. 133, 044905 (2010).CrossRefADSGoogle Scholar
  33. 33.
    Ph. Germain, S. Amokrane, Phys. Rev. E 81, 011407 (2010).CrossRefADSGoogle Scholar
  34. 34.
    H.A. Kramers, Physica A 7, 284 (1940).MATHMathSciNetGoogle Scholar
  35. 35.
    A. Puertas, G. Odriozola, J. Phys. Chem. B 111, 5564 (2007).CrossRefGoogle Scholar
  36. 36.
    I. Saika-Voivod, E. Zaccarelli, F. Sciortino, S.V. Buldyrev, P. Tartaglia, Phys. Rev. E 70, 041401 (2004).CrossRefADSGoogle Scholar
  37. 37.
    S. Saw, N.L. Ellegaard, W. Kob, S. Sastry, J. Chem. Phys. 134, 164506 (2011).CrossRefADSGoogle Scholar
  38. 38.
    X.J. Cao, H.Z. Cummins, J.F. Morris, J. Colloid Interface Sci. 368, 86 (2012).CrossRefGoogle Scholar
  39. 39.
    F.H. Stillinger, Adv. Chem. Phys. 31, 1 (1975).Google Scholar
  40. 40.
    F.W. Starr, J.K. Nielsen, H.E. Stanley, Phys. Rev. E 62, 579 (2000).CrossRefADSGoogle Scholar
  41. 41.
    T. Gleim, W. Kob, K. Binder, Phys. Rev. Lett. 81, 4404 (1998).CrossRefADSGoogle Scholar
  42. 42.
    W. Gotze, Th. Voigtmann, Phys. Rev. E 67, 021502 (2003).CrossRefADSGoogle Scholar
  43. 43.
    E. Zaccarelli, S.V. Buldyrev, E. La Nave, A.J. Moreno, I. Saika-Voivod, F. Sciortino, P. Tartaglia, Phys. Rev. Lett. 94, 218301 (2005).CrossRefADSGoogle Scholar
  44. 44.
    B. Smit, D. Frenkel, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, 2002).Google Scholar
  45. 45.
    L. Verlet, Phys. Rev. 159, 98 (1967).CrossRefADSGoogle Scholar
  46. 46.
    L. Verlet, Phys. Rev. 165, 201 (1967).CrossRefADSGoogle Scholar
  47. 47.
    H.C. Andersen, J. Chem. Phys. 72, 2384 (1980).CrossRefADSGoogle Scholar
  48. 48.
    F. Lado, S.M. Foiles, N.W. Ashcroft, Phys. Rev. A 28, 2374 (1983).CrossRefADSGoogle Scholar
  49. 49.
    A. Malijevski, S. Labik, Mol. Phys. 60, 663 (1987).CrossRefADSGoogle Scholar
  50. 50.
    S. Labik, A. Malijevski, Mol. Phys. 67, 431 (1989).CrossRefADSGoogle Scholar
  51. 51.
    J. Clément-Cottuz, S. Amokrane, C. Regnaut, Phys. Rev. E 51, 1692 (2000).CrossRefADSGoogle Scholar
  52. 52.
    M. Laurati, G. Petekidis, N. Koumakis, F. Cardinaux, A.B. Scofield, J.M. Brader, M. Fuchs, S.U. Egelhaaf, J. Chem. Phys. 130, 134907 (2009).CrossRefADSGoogle Scholar
  53. 53.
    S. Ramakrishnan, M. Fuchs, K.S. Schweizer, C.F. Zukoski, J. Chem. Phys. 116, 2201 (2002).CrossRefADSGoogle Scholar
  54. 54.
    S.A. Shah, Y.L. Chen, K.S. Schweizer, F.C. Zukoski, J. Chem. Phys. 119, 8747 (2003).CrossRefADSGoogle Scholar
  55. 55.
    F. Cardinaux, T. Gibaud, A. Stradner, Peter Schurtenberger, Phys. Rev. Lett. 99, 118301 (2007).CrossRefADSGoogle Scholar
  56. 56.
    B. Ruzicka, L. Zulian, R. Angelini, M. Sztucki, A. Moussaïd, G. Ruocco, Phys. Rev. E 77, 020402(R) (2008).CrossRefADSGoogle Scholar
  57. 57.
    Ph. Germain, J.G. Malherbe, S. Amokrane, Phys. Rev. E 70, 041409 (2004).CrossRefADSGoogle Scholar
  58. 58.
    Y. Hennequin, M. Pollard, J.S. van Duijneveldt, J. Chem. Phys. 120, 1097 (2004).CrossRefADSGoogle Scholar
  59. 59.
    S. Amokrane, J.-G. Malherbe, J. Phys.: Condens. Matter 13, 7199 (2001).ADSGoogle Scholar
  60. 60.
    J.-G. Malherbe, C. Regnaut, S. Amokrane, Phys. Rev. E 66, 061404 (2002).CrossRefADSGoogle Scholar
  61. 61.
    A. Ayadim, J.-G. Malherbe, S. Amokrane, J. Chem. Phys. 122, 234908 (2005).CrossRefADSGoogle Scholar
  62. 62.
    Y. Rosenfeld, J. Chem. Phys. 98, 8126 (1993).CrossRefADSGoogle Scholar
  63. 63.
    T. Voigtman, EPL 96, 36006 (2011).CrossRefADSGoogle Scholar
  64. 64.
    F. Tchangnwa Nya, A. Ayadim, Ph. Germain, S. Amokrane, J. Phys.: Condens. Matter 24, 325106 (2012).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Laboratoire “Physique de Liquides et Milieux Complexes”, Faculté des Sciences et TechnologieUniversité Paris-Est, CréteilCréteil CedexFrance

Personalised recommendations