Dimple coalescence and liquid droplets distributions during phase separation in a pure fluid under microgravity

  • Ana Oprisan
  • Sorinel A. Oprisan
  • John J. Hegseth
  • Yves Garrabos
  • Carole Lecoutre-Chabot
  • Daniel Beysens
Regular Article


Phase separation has important implications for the mechanical, thermal, and electrical properties of materials. Weightless conditions prevent buoyancy and sedimentation from affecting the dynamics of phase separation and the morphology of the domains. In our experiments, sulfur hexafluoride (SF6) was initially heated about 1K above its critical temperature under microgravity conditions and then repeatedly quenched using temperature steps, the last one being of 3.6 mK, until it crossed its critical temperature and phase-separated into gas and liquid domains. Both full view (macroscopic) and microscopic view images of the sample cell unit were analyzed to determine the changes in the distribution of liquid droplet diameters during phase separation. Previously, dimple coalescences were only observed in density-matched binary liquid mixture near its critical point of miscibility. Here we present experimental evidences in support of dimple coalescence between phase-separated liquid droplets in pure, supercritical, fluids under microgravity conditions. Although both liquid mixtures and pure fluids belong to the same universality class, both the mass transport mechanisms and their thermophysical properties are significantly different. In supercritical pure fluids the transport of heat and mass are strongly coupled by the enthalpy of condensation, whereas in liquid mixtures mass transport processes are purely diffusive. The viscosity is also much smaller in pure fluids than in liquid mixtures. For these reasons, there are large differences in the fluctuation relaxation time and hydrodynamics flows that prompted this experimental investigation. We found that the number of droplets increases rapidly during the intermediate stage of phase separation. We also found that above a cutoff diameter of about 100 microns the size distribution of droplets follows a power law with an exponent close to −2 , as predicted from phenomenological considerations.

Graphical abstract


Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 


  1. 1.
    W. John Cahn, E. John Hilliard, J. Chem. Phys. 29, 258 (1958).CrossRefGoogle Scholar
  2. 2.
    J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 31, 688 (1959).CrossRefADSGoogle Scholar
  3. 3.
    K. Binder, Spinodal Decomposition, Vol. 5, Sect. 7, Phase Transformations in Materials (VCH Verlagsgesellschaft, Weinheim, 1991) pp. 405–471.Google Scholar
  4. 4.
    D. Fenistein, D. Bonn, S. Rafai, G.H. Wegdam, J. Meunier, A.O. Parry, M.M. Telo da Gama, Phys. Rev. Lett. 89, 096101 (2002).CrossRefADSGoogle Scholar
  5. 5.
    P. Guenoun, D. Beysens, M. Robert, Phys. Rev. Lett. 65, 2406 (1990).CrossRefADSGoogle Scholar
  6. 6.
    Reinhard Lipowsky, David A. Huse, Phys. Rev. Lett. 57, 353 (1986).CrossRefADSGoogle Scholar
  7. 7.
    Ullrich Steiner, Jacob Klein, Phys. Rev. Lett. 77, 2526 (1996).CrossRefADSGoogle Scholar
  8. 8.
    H. Tanaka, T. Araki, Europhys. Lett. 51, 154 (2000).CrossRefADSGoogle Scholar
  9. 9.
    Daniel Bonn, Emanuel Bertrand, Jacques Meunier, Ralf Blossey, Phys. Rev. Lett. 84, 4661 (2000).CrossRefADSGoogle Scholar
  10. 10.
    D.S. Martula, T. Hasegawa, D.R. Lloyd, R.T. Bonnecaze, J. Colloid Interface Sci. 232, 241 (2000).CrossRefGoogle Scholar
  11. 11.
    D.S. Martula, D.R. Lloyd, R.T. Bonnecaze, Int. J. Multiphase Flow 29, 1265 (2003).CrossRefMATHGoogle Scholar
  12. 12.
    D. Beysens, Y. Garrabos, Physica A 281, 361 (2000).CrossRefADSGoogle Scholar
  13. 13.
    Andrew Cumming, Pierre Wiltzius, Frank S. Bates, Jeffrey H. Rosedale, Phys. Rev. A 45, 885 (1992).CrossRefADSGoogle Scholar
  14. 14.
    Celeste Sagui, Dean Stinson OGorman, Martin Grant, Scanning Microsc. 12, 3 (1998).Google Scholar
  15. 15.
    Celeste Sagui, Martin Grant, Phys. Rev. E 59, 4175 (1999).CrossRefADSGoogle Scholar
  16. 16.
    Vadim S. Nikolayev, Daniel Beysens, Patrick Guenoun, Phys. Rev. Lett. 76, 3144 (1996).CrossRefADSGoogle Scholar
  17. 17.
    D. Beysens, P. Guenoun, P. Sibille, A. Kumar, Phys. Rev. E 50, 1299 (1994).CrossRefADSGoogle Scholar
  18. 18.
    D.A. Beysens, Physica A 239, 329 (1997).CrossRefADSGoogle Scholar
  19. 19.
    A. Oprisan, J.J. Hegseth, G.R. Smith, Carole Lecoutre, Yves Garrabos, Daniel A. Beysens, Phys. Rev. E 84, 021202 (2011).CrossRefADSGoogle Scholar
  20. 20.
    I.B. Bazhlekov, A.K. Chesters, F.N. van de Vosse, Int. J. Multiphase Flow 26, 445 (2000).CrossRefMATHGoogle Scholar
  21. 21.
    K.A Burrill, D.R Woods, J. Colloid Interface Sci. 42, 15 (1973).CrossRefGoogle Scholar
  22. 22.
    Q. Deng, A.V. Anilkumar, T.G. Wang, J. Fluid Mech. 578, 119 (2007).CrossRefMATHADSGoogle Scholar
  23. 23.
    D.S. Dimitrov, I.B. Ivanov, J. Colloid Interface Sci. 64, 096101 (1978).CrossRefGoogle Scholar
  24. 24.
    Derek Y.C. Chan, Evert Klaseboerc, Rogerio Manicac, Soft Matter 5, 2858 (2009).CrossRefADSGoogle Scholar
  25. 25.
    A.K. Chesters, Chem. Engin. Res. Design 69, 259 (1991).Google Scholar
  26. 26.
    Y.T. Hu, D.J. Pine, L. Gary Leal, Phys. Fluids 12, 484 (2000).CrossRefMATHADSGoogle Scholar
  27. 27.
    R. Manica, J.N. Connor, S.L. Carnie, R.G. Horn, D.Y.C. Chan, Langmuir 23, 626 (2007).CrossRefGoogle Scholar
  28. 28.
    R. Manica, E. Klaseboer, D.Y.C. Chan, Soft Matter 4, 1613 (2008).CrossRefADSGoogle Scholar
  29. 29.
    M.A. Rother, A.Z. Zinchenko, R.H. Davis, J. Fluid Mech. 346, 117 (1997).CrossRefMATHADSGoogle Scholar
  30. 30.
    John. R. Saylor, Garrett D. Bounds, AIChE J. 58, 3841 (2012).CrossRefGoogle Scholar
  31. 31.
    Y. Yoon, F. Baldessari, H.D. Ceniceros, L.G. Leal, Phys. Fluids 19, 102102 (2007).CrossRefADSGoogle Scholar
  32. 32.
    V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.C. Desplat, P. Bladon, J. Fluid Mech. 440, 147 (2001).CrossRefMATHADSGoogle Scholar
  33. 33.
    A. Oprisan, S.A. Oprisan, J.J. Hegseth, Y. Garrabos, C. Lecoutre-Chabot, D. Beysens, Phys. Rev. E 77, 051118 (2008).CrossRefADSGoogle Scholar
  34. 34.
    P. Guenoun, R. Gastaud, F. Perrot, D. Beysens, Phys. Rev. A 36, 4876 (1987).CrossRefADSGoogle Scholar
  35. 35.
    D. Beysens, P. Guenoun, F. Perrot, J. Phys.: Condens. Matter 2, SA127 (1990).ADSGoogle Scholar
  36. 36.
    J.J. Hegseth, V.S. Nikolayev, D. Beysens, Y. Garrabos, C. Chabot, in Fourth Microgravity Fluid Physics and Transport Phenomena (1998).Google Scholar
  37. 37.
    John Hegseth, Ana Oprisan, Yves Garrabos, Vadim S. Nikolayev, Carole Lecoutre-Chabot, Daniel Beysens, Phys. Rev. E 72, 031602 (2005).CrossRefADSGoogle Scholar
  38. 38.
    C. Lecoutre, Y. Garrabos, E. Georgin, F. Palencia, D. Beysens, Int. J. Thermophys. 30, 810 (2009).CrossRefADSGoogle Scholar
  39. 39.
    A. Oprisan Fluctuations, Phase Separation and Wetting Films near Liquid-Gas Critical Point, Thesis, University of New Orleans (2006).Google Scholar
  40. 40.
    A.M. Kamp, A.K. Chesters, C. Colin, J. Fabre, Int. J. Multiphase Flow 27, 1363 (2001).CrossRefMATHGoogle Scholar
  41. 41.
    Catherine Colin, Xavier Riou, Jean Fabre, Micrograv. Sci. Technol. 20, 243 (2008).CrossRefGoogle Scholar
  42. 42.
    J. Kamp, S. Nachtigall, S. Maa, M. Kraume, Czas. Tech. M 109, 113 (2012).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ana Oprisan
    • 1
  • Sorinel A. Oprisan
    • 1
  • John J. Hegseth
    • 2
  • Yves Garrabos
    • 3
  • Carole Lecoutre-Chabot
    • 3
  • Daniel Beysens
    • 4
    • 5
  1. 1.Department of Physics and AstronomyCollege of CharlestonCharlestonUSA
  2. 2.Department of PhysicsUniversity of New OrleansNew OrleansUSA
  3. 3.CNRSUniv. Bordeaux, ICMCB, ESEME, UPR 9048PessacFrance
  4. 4.Service des Basses TemperaturesCEA-Grenoble et Universite Joseph FourierGrenobleFrance
  5. 5.Physique et Mecanique des Milieux HeterogenesUMR 7636 CNRS - ESPCI - Universite Pierre et Marie Curie - Universite Paris DiderotParisFrance

Personalised recommendations