Advertisement

Adsorption of pH-responsive polyelectrolyte chains onto spherical macroions

  • V. M. de Oliveira
  • S. J. de Carvalho
Regular Article

Abstract

The adsorption of pH-responsive polyelectrolyte chains onto oppositely charged spherical macroions is investigated through Metropolis Monte Carlo simulations and the Weighted Histogram Analysis Method. In this case, the polymer charge density is susceptible to the solution conditions, such as salt concentration and pH, as well as the presence of other charged species. Thus, the pH and ionic strength variations leads to abrupt variations of the conformational and electric properties of the chain, as a result of first-order-like transition between the adsorbed and desorbed states. The diagram of states as a function of ionic strenght and p H is provided. Despite the inhomogeneities in the polyelectrolyte charge distribution induced by the macroion presence and its dependence on ionic strength, the scaling relation between the macromolecular charge densities and the critical Debye length is obtained in agreement with experimental investigations.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    M. Delcea, H. Möhwald, A.G. Skirtach, Adv. Drug Deliv. Rev. 63, 730 (2011).CrossRefGoogle Scholar
  2. 2.
    K. Sato et al., Adv. Drug Deliv. Rev. 63, 809 (2011).CrossRefGoogle Scholar
  3. 3.
    P. Bawa et al., Biomed. Mater. 4, 22001 (2009).CrossRefGoogle Scholar
  4. 4.
    S.A. Sukhishvili, Curr. Opin. Colloid Interface Sci. 10, 37 (2005).CrossRefGoogle Scholar
  5. 5.
    M. Neu, D. Fischer, T. Kissel, J. Gene. Med. 7, 992 (2005).CrossRefGoogle Scholar
  6. 6.
    R. Jayakumar et al., Carbohydr. Polym. 79, 1 (2010).CrossRefGoogle Scholar
  7. 7.
    P.L. Dubin et al., Langmuir 5, 89 (1989).CrossRefGoogle Scholar
  8. 8.
    D.W. McQuigg, J.I. Kaplan, P.L. Dubin, J. Phys. Chem. 96, 1973 (1992).CrossRefGoogle Scholar
  9. 9.
    H. Zhang, K. Ohbu, P.L. Dubin, Langmuir 16, 9082 (2000).CrossRefGoogle Scholar
  10. 10.
    X.H. Feng et al., Macromolecules 34, 6373 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    K. Yoshida, S. Sokhakian, P.L. Dubin, J. Colloid Interface Sci. 205, 257 (1998).CrossRefGoogle Scholar
  12. 12.
    K.W. Mattison, P.L. Dubin, I.J. Brittain, J. Phys. Chem. B. 102, 3830 (1998).CrossRefGoogle Scholar
  13. 13.
    C.L. Cooper et al., Biomacromolecules 7, 1025 (2006).CrossRefGoogle Scholar
  14. 14.
    N. Miura et al., Langmuir 15, 4245 (1999).CrossRefGoogle Scholar
  15. 15.
    F.W. Wiegel, J. Phys. A: Math. Gen. 10, 299 (1977).ADSCrossRefGoogle Scholar
  16. 16.
    R.R. Netz, J.F. Joanny, Macromolecules 32, 9026 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    F. von Goeler, M. Muthukumar, J. Chem. Phys. 100, 7796 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    R.G. Winkler, A.G. Cherstvy, Phys. Rev. Lett. 96, 066103 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    R.G. Winkler, A.G. Cherstvy, J. Phys. Chem. B 111, 8486 (2007).CrossRefGoogle Scholar
  20. 20.
    A.G. Cherstvy, R.G. Winkler, Phys. Chem. Chem. Phys. 13, 11686 (2011).CrossRefGoogle Scholar
  21. 21.
    P. Haronska et al., Macromol. Theory Simul. 7, 241 (1998).CrossRefGoogle Scholar
  22. 22.
    Z. Wang et al., Macromolecules 44, 8607 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    Q. Cao, M. Bachmann, Soft Matter 9, 5087 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    Q. Cao, M. Bachmann, Chem. Phys. Lett. 586, 51 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    R.G. Winkler, A.G. Cherstvy, Adv. Polym. Sci. 255, 1 (2014).CrossRefGoogle Scholar
  26. 26.
    C. Tong, J. Chem. Phys. 139, 84903 (2013).CrossRefGoogle Scholar
  27. 27.
    A.G. Cherstvy, R.G. Winkler, J. Phys. Chem. B 116, 9838 (2012).CrossRefGoogle Scholar
  28. 28.
    C.Y. Kong, M. Muthukumar, J. Chem. Phys. 109, 1522 (1998).ADSCrossRefGoogle Scholar
  29. 29.
    T. Wallin, P. Linse, Langmuir 12, 305 (1996).CrossRefGoogle Scholar
  30. 30.
    P. Chodanowski, S. Stoll, J. Chem. Phys. 115, 4951 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    M. Brynda, P. Chodanowski, S. Stoll, Colloid Polym. Sci. 280, 789 (2002).CrossRefGoogle Scholar
  32. 32.
    A. Laguecir et al., J. Phys. Chem. B 107, 8056 (2003).CrossRefGoogle Scholar
  33. 33.
    S. Stoll, P. Chodanowski, Macromolecules 35, 9556 (2002).ADSCrossRefGoogle Scholar
  34. 34.
    A. Akinchina, P. Linse, Macromolecules 35, 5183 (2002).ADSCrossRefGoogle Scholar
  35. 35.
    M. Jonsson, P. Linse, J. Chem. Phys. 115, 3406 (2001).ADSCrossRefGoogle Scholar
  36. 36.
    R. de Vries, J. Chem. Phys. 120, 3475 (2004).ADSCrossRefGoogle Scholar
  37. 37.
    S. Ulrich, M. Seijo, S. Stoll, Curr. Opin. Colloid Interface Sci. 11, 268 (2006).CrossRefGoogle Scholar
  38. 38.
    S.J. de Carvalho, EPL 92, 18001 (2010).ADSCrossRefGoogle Scholar
  39. 39.
    S.J. de Carvalho, D.L.Z. Caetano, J. Chem. Phys. 138, 244909 (2013).ADSCrossRefGoogle Scholar
  40. 40.
    S. Ulrich, A. Laguecir, S. Stoll, J. Nanopart. Res. 6, 595 (2004).CrossRefGoogle Scholar
  41. 41.
    A. Laguecir, S. Stoll, Polymer 46, 1359 (2005).CrossRefGoogle Scholar
  42. 42.
    S. Ulrich, A. Laguecir, S. Stoll, Macromolecules 38, 8939 (2005).ADSCrossRefGoogle Scholar
  43. 43.
    S. Ulrich et al., J. Phys. Chem. B 110, 20954 (2006).CrossRefGoogle Scholar
  44. 44.
    R.A. Marcus, J. Chem. Phys. 23, 1107 (1955).ADSCrossRefGoogle Scholar
  45. 45.
    H. Wennerström, B. Jönsson, P. Linse, J. Chem. Phys. 76, 1982 (1982).Google Scholar
  46. 46.
    G.S. Manning, J. Chem. Phys. 51, 924 (1968).ADSCrossRefGoogle Scholar
  47. 47.
    D.A. McQuarrie, Statistical Mechanics (University Science Books, 2000).Google Scholar
  48. 48.
    B. Beresford-Smith, D.Y.C. Chan, Faraday Discuss. Chem. Soc. 76, 65 (1983).CrossRefGoogle Scholar
  49. 49.
    N. Metropolis et al., J. Chem. Phys. 21, 1087 (1953).ADSCrossRefGoogle Scholar
  50. 50.
    N. Madras, A.D. Sokal, J. Stat. Phys. 50, 109 (1988).ADSCrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    M. Ullner et al., J. Chem. Phys. 104, 3048 (1996).ADSCrossRefGoogle Scholar
  52. 52.
    A.A.R Teixeira, M. Lund, F.L.B. da Silva, J. Chem. Theory Comput. 6, 3259 (2010).CrossRefGoogle Scholar
  53. 53.
    A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).ADSCrossRefGoogle Scholar
  54. 54.
    S. Kumar et al., J. Comput. Chem. 13, 1011 (1992).CrossRefGoogle Scholar
  55. 55.
    A. Grossfield, WHAM: The Weighted Histogram Analysis Method version 2.0.7 http://membrane.urmc.rochester edu/content/wham.
  56. 56.
    M. Andrec, The Weighted Histogram Analysis Method (WHAM) (2010).Google Scholar
  57. 57.
    S.J. de Carvalho, R. Metzler, A.G. Cherstvy, Phys. Chem. Chem. Phys. 16, 15539 (2014).CrossRefGoogle Scholar
  58. 58.
    A.V. Dobrynin, M. Rubinstein, Prog. Polym. Sci. 30, 1049 (2005).CrossRefGoogle Scholar
  59. 59.
    T. Odijk, J. Polym. Sci. 15, 477 (1977).Google Scholar
  60. 60.
    J. Skolnick, M. Fixman, Macromolecules 10, 944 (1977).ADSCrossRefGoogle Scholar
  61. 61.
    M. Muthukumar, J. Chem. Phys. 86, 7230 (1987).ADSCrossRefGoogle Scholar
  62. 62.
    M. Ullner, J. Phys. Chem. B 107, 8097 (2003).CrossRefGoogle Scholar
  63. 63.
    M. Manghi, R.R. Netz, Eur. Phys. J. E 14, 67 (2004).CrossRefGoogle Scholar
  64. 64.
    A.V. Dobrynin, Macromolecules 38, 9304 (2005).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Instituto de Biociências, Letras e Ciências ExatasUNESP - Univ Estadual Paulista; Departamento de FísicaSão José do Rio Preto, São PauloBrazil

Personalised recommendations