Advertisement

Simulations on a swollen gyroid nanostructure in thin films relevant to systems of ionic block copolymers

Regular Article

Abstract

Self-assembly of symmetric A/S-B copolymer melt to gyroid nanostructure, partitioning space into interpenetrating nano-labyrinths (channels), in thin films, is investigated using a minimal lattice model with short-range interactions. This model is relevant to poly(styrenesulfonate)-b -polymethylbutylene melt consisting of three types of segments, A, B and S, corresponding to styrene, methylbutylene and styrenesulfonate, respectively. A single sequence of A, B, and S is used in simulations and the fraction of S segments is fixed at p = 0.647 which corresponds to experimental data. The film thickness, L z , is restricted to nine values (L z = 17 , 22, 26, 30, 34, 42, 51, 60, and 68 in units of the underlying lattice constant). The gyroid nanostructure is found to be stable if the film thickness is equal to or greater than the bulk period of the nanophase. The observed gyroid is referred to as swollen since the volume fraction of two continuous networks made of the B segments is anomalous with respect to that of conventional diblock copolymers. In contrast to bulk state, we do not directly observe the order-disorder transition to the gyroid nanophase for thin films. In this case, however, simulations indicate a direct order-disorder transition to a lamellar phase and the order-disorder transition temperature is higher than that in the bulk state, varying strongly with the film thickness.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    M.W. Matsen, M. Schick, Phys. Rev. Lett. 72, 2660 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    M.W. Matsen, F.S. Bates, Macromolecules 29, 7641 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    M. Banaszak, S. Woloszczuk, T. Pakula, S. Jurga, Phys. Rev. E 66, 031804 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    I.W. Hamley, Block Copolymers in Solution: Fundamentals and Applications (Wiley, 2005).Google Scholar
  5. 5.
    V. Abetz, P.F.W. Simon, Adv. Polym. Sci. 189, 125 (2005).CrossRefGoogle Scholar
  6. 6.
    T. Smart, H. Lomas, M. Massignani, M.V. Flores-Merino, L.R. Perez, G. Battaglia, Nano Today 3, 38 (2008).CrossRefGoogle Scholar
  7. 7.
    E. Lennon, K. Katsov, G. Fredrickson, Phys. Rev. Lett. 101, 1 (2008).CrossRefGoogle Scholar
  8. 8.
    Y.C. Tseng, S.B. Darling, Polymers 2, 470 (2010).CrossRefGoogle Scholar
  9. 9.
    K.D. Kreuer, J. Membrane Sci. 185, 29 (2001).CrossRefGoogle Scholar
  10. 10.
    K.D. Kreuer, in Handbook of Fuel Cell - Fundamentals, Technology and Applications, edited by W. Vielstich, A. Lamm, H.A. Gasteiger, Vol. 3 (John Wiley & Sons Ltd, 2003).Google Scholar
  11. 11.
    A.Z. Weber, J. Newman, J. Electrochem. Soc. 150, A1008 (2003).CrossRefGoogle Scholar
  12. 12.
    M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Chem. Rev. 104, 4587 (2004).CrossRefGoogle Scholar
  13. 13.
    K.A. Mauritz, R.B. Moore, Chem. Rev. 104, 4535 (2004).CrossRefGoogle Scholar
  14. 14.
    M.H. Kim, C.J. Glinka, S.A. Grot, W.G. Grot, Macromolecules 39, 4775 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    N.P. Balsara, M. Singh, Abstr. Pap. Am. Chem. Soc. 233, 4578 (2007).Google Scholar
  16. 16.
    M. Goswami, S.K. Kumar, A. Bhattacharya, J.F. Douglas, Macromolecules 40, 4113 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    M.J. Park, N.P. Balsara, in Proton exchange membrane fuel cells 8, pts 1 and 2, edited by T. Fuller, K. Shinohara, V. Ramani, P. Shirvanian, H. Uchida, S. Cleghorn, M. Inaba, S. Mitsushima, P. Strasser, H. Nakagawa, Vol. 16 (Electrochemical Society Inc., 2008) p. 1357.Google Scholar
  18. 18.
    M. Goswami, B.G. Sumpter, T. Huang, J.M. Messman, S.P. Gido, I. Isaacs-Sodeye, J.W. Mays, Soft Matter 24, 6146 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    M.J. Park, N.P. Balsara, Macromolecules 43, 292 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    N.P. Balsara, K.M. Beers, Eur. Polym. J. 47, 647 (2011).CrossRefGoogle Scholar
  21. 21.
    M. Goswami, R. Kumar, B.G. Sumpter, J. Mays, J. Phys. Chem. B 115, 3330 (2011).CrossRefGoogle Scholar
  22. 22.
    X. Wang, M. Goswami, R. Kumar, B.G. Sumpter, J. Mays, Soft Matter 8, 3036 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    M. Singh, O. Odusanya, G.M. Wilmes, H.B. Eitouni, E.D. Gomez, A.J. Patel, V.L. Chen, M.J. Park, P. Fragouli, H. Iatrou et al., Macromolecules 40, 4578 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    M.J. Park, N.P. Balsara, Macromolecules 41, 3678 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    X. Wang, S. Yakovlev, K.M. Beers, M.J. Park, S.a. Mullin, K.H. Downing, N.P. Balsara, Macromolecules 43, 5306 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    A.K. Jha, L. Chen, R.D. Offeman, N.P. Balsara, J. Membrane Sci. 373, 112 (2011).CrossRefGoogle Scholar
  27. 27.
    D. Hajduk, P.E. Harper, S.M. Gruner, C.C. Honeker, G. Kim, E.L. Thomas, L.J. Fetters, Macromolecules 27, 4063 (1994).ADSCrossRefGoogle Scholar
  28. 28.
    M.F. Schulz, F.S. Bates, K. Almdal, K. Mortensen, Phys. Rev. Lett. 73, 86 (1994).ADSCrossRefGoogle Scholar
  29. 29.
    M.R.J. Scherer, Double-Gyroid-Structured Functional Materials: Synthesis and Applications (Springer Verlag, 2013).Google Scholar
  30. 30.
    A. Mavroudis, A. Avgeropoulos, N. Hadjichristidis, E.L. Thomas, D.J. Lohse, Chem. Mater. 15, 1976 (2003).CrossRefGoogle Scholar
  31. 31.
    M.W. Matsen, Curr. Opin. Colloid Interface Sci. 3, 40 (1998).CrossRefGoogle Scholar
  32. 32.
    M.J. Fasolka, A.M. Mayes, Annu. Rev. Mater. Res. 31, 323 (2001).ADSCrossRefGoogle Scholar
  33. 33.
    M. Matsen, J. Chem. Phys. 106, 7781 (1996).ADSCrossRefGoogle Scholar
  34. 34.
    H. Huinink, J. Brokken-Zijp, M. Van Dijk, G. Sevink, J. Chem. Phys. 112, 2452 (2000).ADSCrossRefGoogle Scholar
  35. 35.
    Q. Wang, P. Nealey, J. De Pablo, Macromolecules 34, 3458 (2001).ADSCrossRefGoogle Scholar
  36. 36.
    C. Shin, H. Ahn, E. Kim, D.Y. Ryu, J. Huh, K.W. Kim, T.P. Russell, Macromolecules 41, 9140 (2008).ADSCrossRefGoogle Scholar
  37. 37.
    C. Shin, D. Ryu, J. Huh, J. Kim, K.W. Kim, Macromolecules 42, 2157 (2009).ADSCrossRefGoogle Scholar
  38. 38.
    W. van Zoelen, G. ten Brinke, Soft Matter 5, 1568 (2009).ADSCrossRefGoogle Scholar
  39. 39.
    D. Meng, Q. Wang, Soft Matter 6, 5891 (2010).ADSCrossRefGoogle Scholar
  40. 40.
    J. Albert, T. Epps III, Mater. Today 13, 24 (2010).CrossRefGoogle Scholar
  41. 41.
    W. Li, M. Liu, F. Qiu, A.C. Shi, J. Phys. Chem. B 117, 5280 (2013).CrossRefGoogle Scholar
  42. 42.
    M.S. She, T.Y. Lo, R.M. Ho, Macromolecules 47, 175 (2014).CrossRefGoogle Scholar
  43. 43.
    J. Jung, H.W. Park, S. Lee, H. Lee, T. Chang, K. Matsunaga, H. Jinnai, ACS NANO 4, 3109 (2010).CrossRefGoogle Scholar
  44. 44.
    R.J. Spontak, Colloid Polym. Sci. 267, 808 (1989).CrossRefGoogle Scholar
  45. 45.
    M.J. Fasolka, P. Banerjee, A.M. Mayes, G. Pickett, A.C. Balazs, Macromolecules 33, 5702 (2000).ADSCrossRefGoogle Scholar
  46. 46.
    D.N. Leonard, P.E. Russell, S.D. Smith, R.J. Spontak, Macromol. Rapid Commun. 23, 205 (2002).CrossRefGoogle Scholar
  47. 47.
    I.W. Hamley, Progr. Polym. Sci. 34, 1161 (2009).CrossRefGoogle Scholar
  48. 48.
    S. Handayani, E.L. Dewi, J. Sains Mater. Indo. (2010).Google Scholar
  49. 49.
    P. Knychała, M. Banaszak, M.J. Park, N.P. Balsara, Macromolecules 42, 8925 (2009).ADSCrossRefGoogle Scholar
  50. 50.
    P. Knychała, M. Dziecielski, M. Banaszak, N.P. Balsara, Macromolecules 46, 5724 (2013).ADSCrossRefGoogle Scholar
  51. 51.
    P. Knychała, M. Banaszak, N.P. Balsara, Macromolecules 47, 2529 (2014).ADSCrossRefGoogle Scholar
  52. 52.
    P. Flory, J. Chem. Phys. 9, 660 (1941).ADSCrossRefGoogle Scholar
  53. 53.
    M. Banaszak, J.H. Clarke, Phys. Rev. E 60, 5753 (1999).ADSCrossRefGoogle Scholar
  54. 54.
    P. Knychała, M. Banaszak, P. Polanowski, Soft Matter 8, 6638 (2012).ADSCrossRefGoogle Scholar
  55. 55.
    A. Gauger, A. Weyersberg, T. Pakula, Makromolek. Chem. Theor. Simul. 2, 531 (1993).CrossRefGoogle Scholar
  56. 56.
    A. Weyersberg, T.A. Vilgis, Phys. Rev. E 48, 377 (1993).ADSCrossRefGoogle Scholar
  57. 57.
    T. Pakula, K. Karatasos, S.H. Anastasiadis, G. Fytas, Macromolecules 30, 8463 (1997).ADSCrossRefGoogle Scholar
  58. 58.
    T. Pakula, in Simulation Methods for Polymers, edited by M.J. Kotelyanskii, D.N. Thedorou (Marcel-Dekker, 2004), chapt. 5.Google Scholar
  59. 59.
    N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953).ADSCrossRefGoogle Scholar
  60. 60.
    R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 57, 2607 (1986).ADSCrossRefMathSciNetGoogle Scholar
  61. 61.
    D.J. Earl, M.W. Deem, Phys. Chem. Chem. Phys. 7, 3910 (2005).CrossRefGoogle Scholar
  62. 62.
    A. Arceo, P.F. Green, J. Phys. Chem. B 109, 6958 (2005).CrossRefGoogle Scholar
  63. 63.
    Z. Nie, Z. Su, Z. Sun, T. Shi, L. An, Macromol. Theor. Simul. 14, 463 (2005).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Faculty of PhysicsA. Mickiewicz UniversityPoznanPoland
  2. 2.The President Stanisław Wojciechowski Higher Vocational State School in KaliszKaliszPoland

Personalised recommendations