Role of hydrophobicity on interfacial fluid flow: Theory and some applications

  • B. Lorenz
  • N. Rodriguez
  • P. Mangiagalli
  • B. N. J. Persson
Regular Article

Abstract

The fluid flow through a seal interface depends on the percolating non-contact channels morphology, size and length, and on the interfacial surface energies. In particular, hydrophobic interfaces may expel fluids and decrease the fluid flow of seals, while increasing the sliding friction. We present results of interfacial fluid flow experiments on a hydrostatic column device which demonstrate how interfacial hydrophobicity can block fluid flow at interfaces and reduce the leak rate of seals. The presented results may help to understand the role of interfacial hydrophobicity in many practical applications, some of which we discuss briefly in this paper, e.g., rubber wiper blades on hydrophobic (usually wax-coated) glass, the locomotion of insects on surfaces in water, and syringes.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    M. Mofidi, B. Prakash, B.N.J. Persson, O. Albohr, J. Phys.: Condens. Matter 20, 085223 (2008).ADSGoogle Scholar
  2. 2.
    B.N.J. Persson, O. Albohr, U. Tartaglino, A.I. Volokitin, E. Tosatti, J. Phys.: Condens. Matter 17, R1 (2005).ADSGoogle Scholar
  3. 3.
    B. Lorenz, B.N.J. Persson, EPL 86, 44006 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    B. Lorenz, B.N.J. Persson, EPL 90, 38002 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    B. Lorenz, B.N.J. Persson, Eur. Phys. J. E 31, 159 (2010).CrossRefGoogle Scholar
  6. 6.
    B.N.J. Persson, O. Albohr, C. Creton, V. Peveri, J. Chem. Phys. 120, 8779 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    B.N.J. Persson, C. Yang, J. Phys.: Condens. Matter 20, 315011 (2008).ADSGoogle Scholar
  8. 8.
    B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    B.N.J. Persson, Phys. Rev. Lett. 99, 125502 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    B.N.J. Persson, Surf. Sci. Rep. 61, 201 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    B.N.J. Persson, Eur. Phys. J. E 8, 385 (2002).CrossRefGoogle Scholar
  12. 12.
    B.N.J. Persson, F. Bucher, B. Chiaia, Phys. Rev. B 65, 184106 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    C. Yang, B.N.J. Persson, J. Phys.: Condens. Matter 20, 215214 (2008).ADSGoogle Scholar
  14. 14.
    B.N.J. Persson, J. Phys.: Condens. Matter 20, 312001 (2008).ADSGoogle Scholar
  15. 15.
    W.B. Dapp, A. Luecke, B.N.J. Persson, M. Müser, Phys. Rev. Lett. 108, 244301 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    F. Brochard-Wyart, P.G. de Gennes, J. Phys. C 6, A9 (1994).Google Scholar
  17. 17.
    P. Martin, F. Brochard-Wyart, Phys. Rev. Lett. 80, 3296 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    B.N.J. Persson, A.I. Volokitin, E. Tosatti, Eur. Phys. J. E 11, 409 (2003).CrossRefGoogle Scholar
  19. 19.
    B.N.J. Persson, E. Mugele, J. Phys.: Condens. Matter 16, R295 (2004).ADSGoogle Scholar
  20. 20.
    A. Hozumi, K. Ushiyama, H. Sugimura, O. Takai, Langmuir 15, 7600 (1995).CrossRefGoogle Scholar
  21. 21.
    J. Israelachvili, Intermolecular Surface Forces, third edition (Academic Press, 2011).Google Scholar
  22. 22.
    N. Dixit, Investigation of Factorsffecting Protein=Silicone Oil Interactions, Ph. D. Thesis, University of Conneticut, USA (2013).Google Scholar
  23. 23.
    J.L. Li, S. Pinnamaneni, Y. Quan, A. Jaiswal, F.I. Andersson, X. Zhang, Pharm. Res. 29, 1689 (2012).CrossRefGoogle Scholar
  24. 24.
    C.R. Thomas, D. Geer, Biotechnol. Lett. 33, 443 (2010).CrossRefGoogle Scholar
  25. 25.
    B.N.J. Persson, N. Prodanov, B.A. Krick, N. Rodriguez, N. Mulakaluri, W.G. Sawyer, P. Mangiagalli, Eur. Phys. J. E 35, 5 (2012).CrossRefGoogle Scholar
  26. 26.
    B. Lorenz, B.A. Krick, N. Rodriguez, W.G. Sawyer, P. Mangiagalli, B.N.J. Persson, J. Phys.: Condens. Matter 25, 445013 (2013).ADSGoogle Scholar
  27. 27.
    B.N.J. Persson, B. Lorenz, A.I. Volokitin, Eur. Phys. J. E 31, 3 (2010) (see sect. 5).CrossRefGoogle Scholar
  28. 28.
    L.E. Kirsch, PDA J. Pharm. Sci. Technol. 54, 305 (2000).Google Scholar
  29. 29.
    W.B. Dapp, A. Lücke, B.N.J. Persson, M.H. Müser, Phys. Rev. Lett. 108, 244301 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    J.H.H. Bongaerts, K. Fourtouni, J.R. Stokes, Tribol. Int. 40, 1531 (2007).CrossRefGoogle Scholar
  31. 31.
    N. Hosoda, S.N. Gorb, Proc. R. Soc. London, Ser. B 279, 4236 (2012).CrossRefGoogle Scholar
  32. 32.
    D.J. Crisp, W.H. Thorpe, Discuss. Faraday Soc. 3, 210 (1948).CrossRefGoogle Scholar
  33. 33.
    D. Neumann, D. Woermann, Naturwiss. 96, 933 (2009).ADSCrossRefGoogle Scholar
  34. 34.
    G. McHale, M.R. Flynn, M.I. Newton, Soft Matter 7, 10100 (2011).ADSCrossRefGoogle Scholar
  35. 35.
    A. Beskok, G.E. Karniadakis, Microscale Thermophys. Engin. 3, 43 (1999).CrossRefGoogle Scholar
  36. 36.
    Z.L. Guo, B.C. Shi, C.G. Zheng, EPL 80, 24001 (2007).ADSCrossRefGoogle Scholar
  37. 37.
    Z.L. Guo, C.G. Zheng, B.C. Shi, Phys. Rev. E 77, 036707 (2008).ADSCrossRefGoogle Scholar
  38. 38.
    V.K. Michalis, A.N. Kalarakis, E.D. Skouras, V.N. Burganos, Microfluid Nanofluid 9, 847 (2010).CrossRefGoogle Scholar
  39. 39.
    G.T. Roberts, J. Phys. A 2, 685 (1969).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • B. Lorenz
    • 1
    • 2
  • N. Rodriguez
    • 3
  • P. Mangiagalli
    • 4
  • B. N. J. Persson
    • 1
    • 2
  1. 1.FZ-JülichPGIJülichGermany
  2. 2.Multiscale ConsultingJülichGermany
  3. 3.BD Medical-Pharmaceutical SystemsFranklin LakesUSA
  4. 4.BD-Pharmaceutical SystemsPont de ClaixFrance

Personalised recommendations