Shape and energy of a membrane bud induced by protein coats or viral protein assembly

Regular Article

Abstract

Intracellular transport vesicles and enveloped virus production is mediated by the polymerization of proteins that form bi-dimensional curved and rigid structures, or “coats”, on a membrane. Using the classical framework of fluid membrane elasticity, we compute numerically the shape and the mechanical energy of the membrane deformation induced by a coat at different stage of growth. We furthermore derive analytical approximate expressions for the membrane shape and energy. They are found to be very accurate when compared to numerical calculations. These analytical expressions should be useful when building a relevant model of coat polymerization kinetics. We also discuss some consequences of the membrane energy features on the coat assembly process, showing that at high tension a kinetically arrested state of incomplete assembly could exist.

Graphical abstract

Keywords

Living systems: Cellular Processes 

References

  1. 1.
    B. Alberts, A. Johnson, P. Walter, J. Lewis, M. Raff, K. Roberts, Molecular Biology of the Cell, 5th edition (Garland Science, 2008).Google Scholar
  2. 2.
    B. Antonny, Curr. Opin. Cell Biol. 18, 386 (2006).CrossRefGoogle Scholar
  3. 3.
    H.T. McMahon, J.L. Gallop, Nature 438, 590 (2005).CrossRefADSGoogle Scholar
  4. 4.
    S.D. Conner, S.L. Schmid, Nature 422, 37 (2003).CrossRefADSGoogle Scholar
  5. 5.
    D. Perrais, C.J. Merrifield, Devel. Cell 9, 581 (2005).CrossRefGoogle Scholar
  6. 6.
    V.W. Hsu, S.Y. Lee, J.-S. Yang, Nature Rev. Mol. Cell. Biol. 10, 370 (2009).CrossRefGoogle Scholar
  7. 7.
    H.T. McMahon, I.G. Mills, Curr. Opin. Cell Biol. 16, 379 (2004).CrossRefGoogle Scholar
  8. 8.
    M. Balasubramaniam, E.O. Freed, Physiology 26, 236 (2011).CrossRefGoogle Scholar
  9. 9.
    A. Fotin, Y. Cheng, P. Sliz, N. Grigorieff, S.C. Harrison, T. Kirchhausen, T. Walz, Nature 432, 573 (2004).CrossRefADSGoogle Scholar
  10. 10.
    M.A. Edeling, C. Smith, D. Owen, Nature Rev. Mol. Cell Biol. 7, 32 (2006).CrossRefGoogle Scholar
  11. 11.
    S.M. Stagg, C. Gürkan, D.M. Fowler, P. LaPointe, T.R. Foss, C.S. Potter, B. Carragher, W.E. Balch, Nature 439, 234 (2006).CrossRefADSGoogle Scholar
  12. 12.
    K. Matsuoka, R. Schekman, L. Orci, J.E. Heuser, Proc. Natl. Acad. Sci. U.S.A. 98, 13709 (2001).CrossRefADSGoogle Scholar
  13. 13.
    J.A.G. Briggs, J.D. Riches, B. Glass, V. Bartonov, G. Zanetti, H.-G. Kraüsslich, Proc. Natl. Acad. Sci. U.S.A. 106, 11090 (2009).CrossRefADSGoogle Scholar
  14. 14.
    M. Ehrlich, W. Boll, A. van Oijen, R. Hariharan, K. Chandran, M.L. Nibert, T. Kirchhausen, Cell 118, 591 (2004).CrossRefGoogle Scholar
  15. 15.
    N. Jouvenet, P. D. Bieniasz, S.M. Simon, Nature 454, 236 (2008).CrossRefADSGoogle Scholar
  16. 16.
    N. Jouvenet, S.M. Simon, P.D. Bieniasz, J. Mol. Biology 410, 501 (2011).CrossRefGoogle Scholar
  17. 17.
    J. Gunzenhaüser, N. Olivier, T. Pengo, S. Manley, Nano Lett. 12, 4701 (2012).CrossRefADSGoogle Scholar
  18. 18.
    J.-B. Manneville, J.-F. Casella, E. Ambroggio, P. Gounon, J. Bertherat, P. Bassereau, J. Cartaud, B. Antonny, B. Goud, Proc. Natl. Acad. Sci. U.S.A. 110, 13244 (2013).CrossRefGoogle Scholar
  19. 19.
    A.R. Thiam, B. Antonny, J. Wang, J. Delacotte, F. Wilfling, T.C. Wather, R. Beck, J.E. Rothman, F. Pincet, Proc. Natl. Acad. Sci. U.S.A. 105, 16946 (2008).CrossRefGoogle Scholar
  20. 20.
    L. Foret, P. Sens, Proc. Natl. Acad. Sci. U.S.A. 105, 14763 (2008).CrossRefADSGoogle Scholar
  21. 21.
    P. Sens, M.S. Turner, Phys. Rev. E 73, 031918 (2006).CrossRefADSGoogle Scholar
  22. 22.
    R. Zhang, T.T. Nguyen, Phys. Rev. E 78, 051903 (2008).MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    M. Deserno, Phys. Rev. E 69, 031903 (2004).CrossRefADSGoogle Scholar
  24. 24.
    M.K. Higgins, H.T. McMahon, Trends Biochem. Sci. 27, 257 (2002).CrossRefGoogle Scholar
  25. 25.
    L.-A. Carlson et al., PLoS Pathogens 6, e1001173 (2010).CrossRefGoogle Scholar
  26. 26.
    T. Kirchhausen, Trends Cell Biol. 19, 596 (2009).CrossRefGoogle Scholar
  27. 27.
    F. Jülicher, U. Seifert, Phys. Rev. E 49, 4728 (1994).CrossRefADSGoogle Scholar
  28. 28.
    U. Seifert, K. Berndl, R. Lipowsky, Phys. Rev. A 44, 1182 (1991).CrossRefADSGoogle Scholar
  29. 29.
    S.A. Safran, Statistical Thermodynamics Of Surfaces, Interfaces, And Membranes (Westview Press, 2003).Google Scholar
  30. 30.
    I. Derényi, F. Jülicher, J. Prost, Phys. Rev. Lett. 89, 209901 (2002).CrossRefADSGoogle Scholar
  31. 31.
    A. Upadhyaya, M.P. Sheetz, Biophys. J. 86, 2923 (2004).CrossRefADSGoogle Scholar
  32. 32.
    C.E. Morris, U. Homann, J. Membr. Biol. 179, 79 (2001).Google Scholar
  33. 33.
    B. Sinha et al., Cell 144, 402 (2011).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratoire de Physique Statistique, Ecole Normale SupérieureUniversité Pierre et Marie Curie, CNRSParisFrance

Personalised recommendations