Skip to main content
Log in

Acoustic characterisation of liquid foams with an impedance tube

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Acoustic measurements provide convenient non-invasive means for the characterisation of materials. We show here for the first time how a commercial impedance tube can be used to provide accurate measurements of the velocity and attenuation of acoustic waves in liquid foams, as well as their effective “acoustic” density, over the 0.5-6kHz frequency range. We demonstrate this using two types of liquid foams: a commercial shaving foam and “home-made” foams with well-controlled physico-chemical and structural properties. The sound velocity in the latter foams is found to be independent of the bubble size distribution and is very well described by Wood’s law. This implies that the impedance technique may be a convenient way to measure in situ the density of liquid foams. Important questions remain concerning the acoustic attenuation, which is found to be influenced in a currently unpredictible manner by the physico-chemical composition and the bubble size distribution of the characterised foams. We confirm differences in sound velocities in the two types of foams (having the same structural properties) which suggests that the physico-chemical composition of liquid foams has a non-negligible effect on their acoustic properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Weaire, S. Hutzler, The Physics of Foams (Clarendon Press, Oxford, 1999).

  2. I. Cantat, S. Cohen-Addad, F. Elias, F. Graner, R. Hohler, O. Pitois, A. Saint-Jalmes, Les mousses : structure et dynamique (Belin, 2010).

  3. J.F. Allard, N. Atalla, Propagation of Sound in Porous Media (Wiley, 2009).

  4. A.S. Dukhin, P.J. Goetz, Adv. Colloid Interface Sci. 92, 73 (2001).

    Article  Google Scholar 

  5. Z.M. Orenbakh, G.A. Shushkov, Acoust. Phys. 39, 63 (1993).

    ADS  Google Scholar 

  6. I. Shreiber, G. Ben-Dor, A. Britan, V. Feklistov, Shock Waves 15, 199 (2006).

    Article  ADS  Google Scholar 

  7. A.B. Wood, A Textbook of sound (Bell, London, 1932).

  8. V.V Zamashchikov, N.A. Kakutkina, Sov. Phys. Acoust. 37, 248 (1991).

    Google Scholar 

  9. N. Mujica, S. Fauve, Phys. Rev. E 66, 021404 (2002).

    Article  ADS  Google Scholar 

  10. J. Ding, F.W. Tsaur, A. Lips, A. Akay, Phys. Rev. E 75, 041601 (2007).

    Article  ADS  Google Scholar 

  11. I. Ben Salem, R.-M. Guillermic, C. Sample, V. Leroy, A. Saint-Jalmes, B. Dollet, Soft Matter 9, 1194 (2013).

    Article  ADS  Google Scholar 

  12. J. Pierre, F. Elias, V Leroy, Ultrasonics 53, 622 (2013).

    Article  Google Scholar 

  13. T.D. Rossing, Springer Handbook of Acoustics (Springer Verlag, 2007).

  14. D. Daugelaite, PhD thesis, University of Manitoba (2011).

  15. K.C. Symers, Food Chem. 6, 63 (1980).

    Article  Google Scholar 

  16. J. Sauter, VDI-Forschungsheft, 279 (1926).

  17. Determination of sound absorption coefficient and impedance in impedance tubes, ISO 10534-2, International Organization for Standardization, Geneva, Switzerland (2002).

  18. A.F Seybert, D.F. Ross, J. Acoust. Soc. Am. 61, 1362 (1977).

    Article  ADS  Google Scholar 

  19. A. Maestro, W. Drenckhan, E. Rio, R. Hohler, Soft Matter 9, 2531 (2013).

    Article  ADS  Google Scholar 

  20. L.M. Brekhovskikh, Waves in Layered Media (Academic, New York, 1960).

  21. J.L. Auriault, C. Boutin, C. Geindreau, Homogenization of coupled Phenomena in Heterogenous Media (John Wiley and Sons, 2009).

  22. J.L. Auriault, L. Borne, R. Chambon, J. Acoust. Soc. Am. 77, 1641 (1985).

    Article  ADS  MATH  Google Scholar 

  23. A. Prosperetti, J. Acoust. Soc. Am. 56, 878 (1974).

    Article  ADS  Google Scholar 

  24. A. Prosperetti, L.A. Crum, K.W. Commander, J. Acoust. Soc. Am. 83, 502 (1988).

    Article  ADS  Google Scholar 

  25. P.C. Waterman, R. Truell, J. Math. Phys. 2, 512 (1961).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. I.I Goldfarb, I.R. Schreiber, F.I. Vafina, J. Acoust. Soc. Am. 92, 2756 (1992).

    Article  ADS  Google Scholar 

  27. I.I Goldfarb, Z. Orenbakh, I.R. Schreiber, F.I. Vafina, Shock Waves 7, 77 (1997).

    Article  ADS  Google Scholar 

  28. E. Lorenceau, N. Louvet, F. Rouyer, O. Pitois, Eur. Phys. J. E 28, 293 (2009).

    Article  Google Scholar 

  29. A.L. Lindsay, L.A. Bromley, Indust. Engin. Chem. 42, 1508 (1950).

    Article  Google Scholar 

  30. A.D. Godal, D.J. Durian, J. Colloids Interface Sci. 213, 169 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Leroy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierre, J., Guillermic, RM., Elias, F. et al. Acoustic characterisation of liquid foams with an impedance tube. Eur. Phys. J. E 36, 113 (2013). https://doi.org/10.1140/epje/i2013-13113-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13113-1

Keywords

Navigation