Eliminating cracking during drying

  • Qiu Jin
  • Peng Tan
  • Andrew B. Schofield
  • Lei Xu
Regular Article

Abstract

When colloidal suspensions dry, stresses build up and cracks often occur -a phenomenon undesirable for important industries such as paint and ceramics. We demonstrate an effective method which can completely eliminate cracking during drying: by adding emulsion droplets into colloidal suspensions, we can systematically decrease the amount of cracking, and eliminate it completely above a critical droplet concentration. Since the emulsion droplets eventually also evaporate, our technique achieves an effective function while making little changes to the component of final product, and may therefore serve as a promising approach for cracking elimination. Furthermore, adding droplets also varies the speed of air invasion and provides a powerful method to adjust drying rate. With the effective control over cracking and drying rate, our study may find important applications in many drying- and cracking-related industrial processes.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    U.T. Gonzenbach, A.R. Studart, D. Steinlin, E. Tervoort, L.J. Gauckler, J. Am. Ceram. Soc. 90, 3407 (2007)CrossRefGoogle Scholar
  2. 2.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature (London) 389, 827 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Phys. Rev. E. 62, 756 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    E.R. Dufresne, E.I. Corwin, N.A. Greenblatt, J. Ashmore, D.Y. Wang, A.D. Dinsmore, J.X. Cheng, X.S. Xie, J.W. Hutchinson, D.A. Weitz, Phys. Rev. Lett. 91, 224501 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    E.R. Dufresne, D.J. Stark, N.A. Greenblatt, J.X. Cheng, J.W. Hutchinson, L. Mahadevan, D.A. Weitz, Langmuir 22, 7144 (2006)CrossRefGoogle Scholar
  6. 6.
    L. Xu, S. Davies, A.B. Schofield, D.A. Weitz, Phys. Rev. Lett. 101, 094502 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    C. Allain, L. Limat, Phys. Rev. Lett. 74, 2981 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    T. Boeck, H.A. Bahr, S. Lampenscherf, U. Bahr, Phys. Rev. E. 59, 1408 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    S. Kitsunezaki, Phys. Rev. E. 60, 6449 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    A. Groisman, E. Kaplan, Europhys. Lett. 25, 415 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    K.A. Shorlin, J.R. de Bruyn, M. Graham, S.W. Morris, Phys. Rev. E. 61, 6950 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    S. Kitsunezaki, J. Phys. Soc. Jpn. 78, 064801 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    C.J. Martinez, J.A. Lewis, Langmuir 18, 4689 (2002)CrossRefGoogle Scholar
  14. 14.
    K.B. Singh, M.S. Tirumkudulu, Phys. Rev. Lett. 98, 218302 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    K.B. Singh, G. Deoghare, M.S. Tirumkudulu, Langmuir 25, 751 (2009)CrossRefGoogle Scholar
  16. 16.
    J.H. Prosser, T. Brugarolas, S. Lee, A.J. Nolte, D. Lee, Nano Lett. 12, 5287 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    The evaporation rate of the droplets is much slower than the solvent therefore the droplet volume is approximately a constant during our measurement timeGoogle Scholar
  18. 18.
    L. Xu, A. Bergès, P.J. Lu, A.R. Studart, A.B. Schofield, H. Oki, S. Davies, D.A. Weitz, Phys. Rev. Lett. 104, 128303 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Qiu Jin
    • 1
  • Peng Tan
    • 1
  • Andrew B. Schofield
    • 2
  • Lei Xu
    • 1
  1. 1.Department of PhysicsThe Chinese University of Hong KongHong KongChina
  2. 2.The School of Physics and AstronomyUniversity of EdinburghEdinburghUK

Personalised recommendations