Probing the micromechanics of a multi-contact interface at the onset of frictional sliding

Regular Article

Abstract

Digital Image Correlation is used to study the micromechanics of a multi-contact interface formed between a rough elastomer and a smooth glass surface. The in-plane elastomer deformation is monitored during the incipient sliding regime, i.e. the transition between static and sliding contact. As the shear load is increased, an annular slip region, in coexistence with a central stick region, is found to progressively invade the contact. From the interfacial displacement field, the tangential stress field can be further computed using a numerical inversion procedure. These local mechanical measurements are found to be correctly captured by Cattaneo and Mindlin (CM)'s model. However, close comparison reveals significant discrepancies in both the displacement and stress fields that reflect the oversimplifying hypothesis underlying CM's scenario. In particular, our optical measurements allow us to exhibit an elasto-plastic-like friction constitutive equation that differs from the rigid-plastic behavior assumed in CM's model. This local constitutive law, which involves a roughness-related length scale, is consistent with the model of Bureau et al. (Proc. R. Soc. London, Ser. A 459, 2787 (2003)) derived for homogeneously loaded macroscopic multi-contact interfaces, thus extending its validity to mesoscopic scales.

Graphical abstract

Keywords

Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 

References

  1. 1.
    K.L. Johnson, Contact Mechanics (Cambridge University Press, 2003)Google Scholar
  2. 2.
    C.H. Scholz, The Mechanics of Earthquakes and Faulting (Cambridge University Press, 2010)Google Scholar
  3. 3.
    R.S. Johansson, J.R. Flanagan, Nat. Rev. Neurosci. 10, 345 (2009)CrossRefGoogle Scholar
  4. 4.
    T. Baumberger, C. Caroli, O. Ronsin, Phys. Rev. Lett. 88, 075509 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    K.W. Xia, A.J. Rosakis, H. Kanamori, Science 303, 1859 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    S.M. Rubinstein, G. Cohen, J. Fineberg, J. Phys. D 42, 214016 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    O. Ben-David, G. Cohen, J. Fineberg, Science 330, 211 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    S. Maegawa, A. Suzuki, K. Nakano, Tribol. Lett. 38, 313 (2010)CrossRefGoogle Scholar
  9. 9.
    O.M. Braun, I. Barel, M. Urbakh, Phys. Rev. Lett. 103, 194301 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    J. Scheibert, D.K. Dysthe, EPL 92, 54001 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    M. Di Bartolomeo, A. Meziane, F. Massi, L. Baillet, A. Fregolent, Tribol. Int. 43, 1620 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Trømborg, J. Scheibert, D.S. Amundsen, K. Thøgersen, A. Malthe-Sørenssen, Phys. Rev. Lett. 107, 074301 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    E. Bouchbinder, E. Brener, I. Barel, M. Urbakh, Phys. Rev. Lett. 107, 235501 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    D.S. Amundsen, J. Scheibert, K. Thøgersen, J. Trømborg, A. Malthe-Sørenssen, Tribol. Lett. 45, 357 (2012)CrossRefGoogle Scholar
  15. 15.
    D.S. Kammer, V.A. Yastrebov, P. Spijker, J.-F. Molinari, Tribol. Lett. 48, 27 (2012)CrossRefGoogle Scholar
  16. 16.
    A. Chateauminois, C. Frétigny, Eur. Phys. J. E 27, 221 (2008)CrossRefGoogle Scholar
  17. 17.
    A. Chateauminois, C. Frétigny, L. Olanier, Phys. Rev. E 81, 026106 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    J. Scheibert, A. Prevost, J. Frelat, P. Rey, G. Debrégeas, EPL 83, 34003 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    J. Scheibert, A. Prevost, G. Debrégeas, E. Katzav, M. Adda-Bedia, J. Mech. Phys. Solids 57, 1921 (2009)MathSciNetADSCrossRefMATHGoogle Scholar
  21. 21.
    B. Lorenz, B.N.J. Persson, J. Phys.: Condens. Matter 21, 015003 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Mark J.E. (Editor), Polymer Data Handbook (Oxford University Press, 1999)Google Scholar
  23. 23.
    J.A. Greenwood, J.H. Tripp, Trans. ASME, Ser. E, J. Appl. Mech. 34, 153 (1967)ADSCrossRefGoogle Scholar
  24. 24.
    J. Scheibert, Mécanique du Contact aux Échelles Mésoscopiques (Edilivre, Collection Universitaire, 2008)Google Scholar
  25. 25.
    F. Hild, S. Roux, Strain 42, 69 (2006)CrossRefGoogle Scholar
  26. 26.
    O. Ronsin, K.L. Coeyrehourcq, Proc. R. Soc. London, Ser. A 457, 1277 (2001)ADSCrossRefMATHGoogle Scholar
  27. 27.
    K.R. Shull, Matter Sci. Eng. R. 36, 1 (2002)CrossRefGoogle Scholar
  28. 28.
    K.N.G. Fuller, D. Tabor, Proc. R. Soc. London, Ser. A 345, 327 (1975)ADSCrossRefGoogle Scholar
  29. 29.
    E. Wandersman, R. Candelier, G. Debrégeas, A. Prevost, Phys. Rev. Lett. 107, 164301 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    L. Landau, E. Lifshitz, Theory of Elasticity (Butterworth Heinemann, 1986)Google Scholar
  31. 31.
    E.K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, R.S. Chadwick, Biophys. J. 82, 2798 (2002)CrossRefGoogle Scholar
  32. 32.
    C. Cattaneo, Rend. Accad. Naz. Lincei, 27, 214 (1938)Google Scholar
  33. 33.
    R.D. Mindlin, Trans. ASME, Ser. E, J. Appl. Mech. 16, 259 (1949)MathSciNetMATHGoogle Scholar
  34. 34.
    D. Hills, D. Nowell, Mechanics of Fretting Fatigue (Kluwer Academic Publishers, 1994)Google Scholar
  35. 35.
    M. Ciavarella, Int. J. Solids Struct. 35, 2349 (1998)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    A. Savkoor, Dry adhesive contact of elastomers, Mechanical engineering dissertation, Technical University of Delft (1987)Google Scholar
  37. 37.
    A. Savkoor, G. Briggs, Proc. R. Soc. London, Ser. A 356, 103 (1977)ADSCrossRefMATHGoogle Scholar
  38. 38.
    I. Etsion, J. Tribol., Trans. ASME 132, 020801 (2010)CrossRefGoogle Scholar
  39. 39.
    D.T. Nguyen, P. Paolino, M.C. Audry, A. Chateauminois, C. Frétigny, Y. Le Chenadec, M. Portigliatti, E. Barthel, J. Adhes. 87, 235 (2011)CrossRefGoogle Scholar
  40. 40.
    K.L. Johnson, Proc. R. Soc. London, Ser. A 230, 531 (1955)ADSCrossRefGoogle Scholar
  41. 41.
    K.L. Johnson, J. Mech. Eng. Sci. 3, 362 (1961)ADSCrossRefGoogle Scholar
  42. 42.
    L. Bureau, C. Caroli, T. Baumberger, Proc. R. Soc. London, Ser. A 459, 2787 (2003)MathSciNetADSCrossRefMATHGoogle Scholar
  43. 43.
    J.A. Greenwood, J.B.P. Williamson, Proc. R. Soc. London, Ser. A 295, 300 (1966)ADSCrossRefGoogle Scholar
  44. 44.
    M. Gonzalez-Valadez, A. Baltazar, R.S. Dwyer-Joyce, Wear 268, 373 (2010)CrossRefGoogle Scholar
  45. 45.
    S. Akarapu, T. Sharp, M.O. Robbins, Phys. Rev. Lett. 106, 204301 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    C. Campaná, B.N.J. Persson, M.H. Müser, J. Phys.: Condens. Matter 23, 085001 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    M.E. Kartal, D.M. Mulvihill, D. Nowell, D.A. Hills, Tribol. Int. 44, 1188 (2011)CrossRefGoogle Scholar
  48. 48.
    A. Kurian, S. Prasad, A. Dhinojwala, Macromolecules 43, 2438 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    G.N. Boitnott, R.L. Biegel, C.H. Scholz, N. Yoshioka, W. Wang, J. Geophys. Res. 97, 8965 (1992)ADSCrossRefGoogle Scholar
  50. 50.
    G. Carbone, F. Bottiglione, J. Mech. Phys. Solids 56, 2555 (2008)CrossRefADSMATHGoogle Scholar
  51. 51.
    S.R. Brown, C.H. Scholz, J. Geophys. Res., Solid Earth Planets 90, 5531 (1985)CrossRefGoogle Scholar
  52. 52.
    M.H. Müser, Phys. Rev. Lett. 100, 055504 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    A. Brzoza, V. Pauk, Arch. Appl. Mech. 78, 531 (2008)ADSCrossRefMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire Jean Perrin LJPCNRS/UPMC Univ Paris 06, FRE 3231ParisFrance
  2. 2.Laboratoire de Tribologie et Dynamique des Systèmes, CNRSEcole Centrale de LyonEcullyFrance

Personalised recommendations