Origins of binary gene expression in post-transcriptional regulation by microRNAs

Regular Article

Abstract

MicroRNA-mediated regulation of gene expression is characterised by some distinctive features that set it apart from unregulated and transcription-factor-regulated gene expression. Recently, a mathematical model has been proposed to describe the dynamics of post-transcriptional regulation by microRNAs. The model explains the observations made in single-cell experiments quite well. In this paper, we introduce some additional features into the model and consider two specific cases. In the first case, a noncooperative positive feedback loop is included in the transcriptional regulation of the target gene expression. In the second case, a stochastic version of the original model is considered in which there are random transitions between the inactive and active expression states of the gene. In the first case we show that bistability is possible in a parameter regime, due to the presence of a nonlinear protein decay term in the gene expression dynamics. In the second case, we derive the conditions for obtaining stochastic binary gene expression. We find that this type of gene expression is more favourable in the case of regulation by microRNAs as compared to the case of unregulated gene expression. The theoretical predictions relating to binary gene expression are experimentally testable.

Keywords

Living systems: Cellular Processes 

References

  1. 1.
    M. Inui, G. Martello, S. Piccolo, Nat. Rev. Mol. Cell. Biol. 11, 252 (2010).CrossRefGoogle Scholar
  2. 2.
    A.S. Flynt, E.C. Lai, Nat. Rev. Genet. 9, 831 (2008).CrossRefGoogle Scholar
  3. 3.
    A.K.L. Leung, P.A. Sharp, Mol. Cell 40, 205 (2010).CrossRefGoogle Scholar
  4. 4.
    S. Mukherji, M.S. Ebert, G.X.Y. Zheng, J.S. Tsang, P.A. Sharp, A. van Oudenaarden, Nat. Genet. 43, 854 (2011).CrossRefGoogle Scholar
  5. 5.
    Z.L. Whichard, A.E. Motter, P.J. Stein, S.J. Corey, J. Biol. Chem. 286, 4742 (2011).CrossRefGoogle Scholar
  6. 6.
    E. Levine, Z. Zhang, T. Kuhlman, T. Hwa, PLoS Biol. 5, e229 (2007).CrossRefGoogle Scholar
  7. 7.
    E. Levine, T. Hwa, Curr. Opin. Microbiol. 11, 574 (2008).CrossRefGoogle Scholar
  8. 8.
    E. Levine, P. McHale, H. Levine, PLoS Comp. Biol. 3, e233 (2007).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    N. Mitarai, A.M.C. Andersson, S. Krishna, S. Searsey, K. Sneppen, Phys. Biol. 4, 164 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    N.E. Buchler, M. Louis, J. Mol. Biol. 384, 1106 (2008).CrossRefGoogle Scholar
  11. 11.
    W.K. Smits, O.P. Kuipers, J.-W. Veening, Nat. Rev. Microbiol. 4, 259 (2006).CrossRefGoogle Scholar
  12. 12.
    J.R. Pomerening, Curr. Opin. Biotechnol. 19, 381 (2008).CrossRefGoogle Scholar
  13. 13.
    J.E. Ferrell Jr., Curr. Opin. Cell Biol. 14, 140 (2002).CrossRefGoogle Scholar
  14. 14.
    A.Y. Mitrophanov, E.A. Groisman, Bioessays 30, 542 (2008).CrossRefGoogle Scholar
  15. 15.
    C. Tan, P. Marguet, L. You, Nat. Chem. Biol. 5, 842 (2009).CrossRefGoogle Scholar
  16. 16.
    S. Klumpp, Z. Zhang, T. Hwa, Cell 139, 1366 (2009).CrossRefGoogle Scholar
  17. 17.
    V. Zhadnov, Phys. Rep. 500, 1 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    R. Karmakar, I. Bose, Phys. Biol. 1, 197 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    A. Raj, C.S. Peskin, D. Tranchina, D.Y. Vargas, S. Tyagi, PLoS Biol. 4, e309 (2006).CrossRefGoogle Scholar
  20. 20.
    I. Bose, Sci. Culture 78, 113 (2012).Google Scholar
  21. 21.
    S. Ghosh, S. Banerjee, I. Bose, Eur. Phys. J. E 35, 1 (2012).CrossRefGoogle Scholar
  22. 22.
    M.S. Ko, J. Theor. Biol. 153, 181 (1991).CrossRefGoogle Scholar
  23. 23.
    T.B. Kepler, T.C. Elston, Biophys. J. 81, 3116 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    M. Kærn, T.C. Elston, W.J. Blake, J.J. Collins, Nat. Rev. Genet. 6, 451 (2005).CrossRefGoogle Scholar
  25. 25.
    A. Raj, A. van Oudenaarden, Cell 135, 216 (2008).CrossRefGoogle Scholar
  26. 26.
    R. Karmakar, I. Bose, Phys. Biol. 4, 29 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    T.L. To, N. Maheshri, Science 327, 1142 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    G. Balázsi, A. van Oudenaarden, J.J. Collins, Cell 144, 910 (2011).CrossRefGoogle Scholar
  29. 29.
    N.Q. Balaban, Curr. Opin. Genet. Dev. 21, 768 (2011).CrossRefGoogle Scholar
  30. 30.
    J.-W. Veening, W.K. Smits, O.P. Kuipers, Annu. Rev. Microbiol. 62, 193 (2008).CrossRefGoogle Scholar
  31. 31.
    K. Sureka, B. Ghosh, A. Dasgupta, J. Basu, M. Kundu, I. Bose, PLoS ONE 3, e1771 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    S. Ghosh, K. Sureka, B. Ghosh, I. Bose, J. Basu, M. Kundu, BMC Syst. Biol. 5, 18 (2011).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsBose InstituteKolkataIndia

Personalised recommendations