Desolvation of macromolecules by ultrafast heating: A molecular-dynamics study

  • S. N. Sun
  • H. M. Urbassek
Regular Article

Abstract

Using molecular-dynamics simulation, we investigate the consequences of ultrafast laser-induced heating of a water droplet containing a solvated polymer, using the example of a 1 ps laser irradiation. We study the isolation process and the properties of the isolated polymer as a function of the polymer size, the droplet size, and the temperature to which the droplet is heated. We find that the isolation process occurs on a time scale of a few ten ps. The final polymer temperature increases linearly with the heating. Polymers embedded in larger droplets acquire higher temperatures, while larger polymers are less heated. In spite of the ultrafast heating, the isolated polymer remains in its coiled conformation.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    A. Wattenberg, F. Sobott, H.-D. Barth, B. Brutschy, Int. J. Mass Spectrom. 203, 49 (2000)CrossRefGoogle Scholar
  2. 2.
    A. Charvat, E. Lugovoj, M. Faubel, B. Abel, Eur. Phys. J. D 20, 573 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    X. Gu, H.M. Urbassek, Appl. Phys. B 81, 675 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Y.S. Dou, L.V. Zhigilei, N. Winograd, B.J. Garrison, J. Phys. Chem. A 105, 2748 (2001)CrossRefGoogle Scholar
  5. 5.
    Y. Dou, N. Winograd, B.J. Garrison, L.V. Zhigilei, J. Phys. Chem. B 107, 2362 (2003)CrossRefGoogle Scholar
  6. 6.
    Y. Dou, Chem. Phys. Lett. 416, 336 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    S.P. Thirumuruganandham, H.M. Urbassek, Rap. Commun. Mass Spectrom. 24, 349 (2010)CrossRefGoogle Scholar
  8. 8.
    S.N. Sun, H.M. Urbassek, Appl. Phys. A 101, 71 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    W.L. Jorgensen, J. Tirado-Rives, Proc. Natl. Acad. Sci. U.S.A. 102, 6665 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    C. Vega, J.L.F. Abascal, E. Sanz, L.G. MacDowell, C. McBride, J. Phys.: Condens. Matter 17, S3283 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, J. Comput. Chem. 26, 1701 (2005)CrossRefGoogle Scholar
  13. 13.
    D. van der Spoel, E. Lindahl, B. Hess, C. Kutzner, A.R. van Buuren, E. Apol, P.J. Meulenhoff, D.P. Tieleman, A.L. Sijbers, K.A. Feenstra, GROMACS user manual Version 4.0 (2006), URL http://www.gromacs.org/Documentation/Manual
  14. 14.
    C.J. Fennell, J.D. Gezelter, J. Chem. Phys. 124, 234104 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    S. Miyamoto, P.A. Kollman, J. Comput. Chem. 13, 952 (1992)CrossRefGoogle Scholar
  16. 16.
    N.K. Srinivasan, J.V. Michael, Int. J. Chem. Kinet. 38, 211 (2006)CrossRefGoogle Scholar
  17. 17.
    A.M. Dokter, S. Woutersen, H.J. Bakker, Phys. Rev. Lett. 94, 178301 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    S.D. Stoddard, J. Comput. Phys. 27, 291 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    M.I. Smith, V. Bertola, Phys. Rev. Lett. 104, 154502 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    S.N. Sun, H.M. Urbassek, J. Phys. Chem. B 115, 13280 (2011)CrossRefGoogle Scholar
  21. 21.
    S.N. Sun, H.M. Urbassek, Soft Matter 8, 4708 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    S.A. Aksyonov, P. Williams, Rap. Commun. Mass Spectrom. 15, 2001 (2001)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. N. Sun
    • 1
  • H. M. Urbassek
    • 1
  1. 1.Physics Department and Research Center OPTIMASUniversity KaiserslauternKaiserslauternGermany

Personalised recommendations