Dewetting of cellular monolayers

Regular Article


We investigate the physical principles of cellular layer stability. We show that cohesive cellular layers deposited on non-adhesive substrates are metastable and “dewet" by nucleation and growth of dry patches. The dewetting process can be induced either chemically by a non-adhesive surface treatment or, unlike simple liquids, physically by a decrease in the substrate rigidity. We thus unveil two mechanisms by which the integrity of cellular layers can be compromised. We interpret the opening dynamics by an analogy with the dewetting of viscous films. This analogy can be exploited to estimate parameters characterizing the mechanical response of a cellular layer.


Living systems: Multicellular Systems 


  1. 1.
    R. Nagpal, A. Patel, M.C. Gibson, Bioessays 30, 260 (2008).CrossRefGoogle Scholar
  2. 2.
    R.I. Freshney, M.G. Freshney, Culture of Epithelial Cells (Wiley, 2002).Google Scholar
  3. 3.
    E.N. Marieb, K. Hoehn, Human anatomy and physiology, 3rd edition (Benjamin Cummings, 2007).Google Scholar
  4. 4.
    A.T.L. van Lommel, From cells to organs: a histology textbook and atlas (Springer, 2002).Google Scholar
  5. 5.
    T.H. McConnell, The nature of disease: Pathology for the Health professions (Lippincott Williams & Wilkins, 2006).Google Scholar
  6. 6.
    N. Gov, Nat. Mater. 10, 412 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    M. Poujade, E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, B. Ladoux, A. Buguin, P. Silberzan, Proc. Natl. Acad. Sci. U.S.A. 104, 15988 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    X. Trepat, M.R. Wasserman, T.E. Angelini, E. Millet, D.A. Weitz, J.P. Butler, J.J. Fredberg, Nat. Phys. 5, 426 (2009).CrossRefGoogle Scholar
  9. 9.
    P.L. Ryan, R.A. Foty, J. Kohnand, M.S. Steinberg, Proc. Natl. Acad. Sci. U.S.A. 98, 4323 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    S. Douezan, K. Guevorkian, R. Naouar, S. Dufour, D. Cuvelier, F. Brochard-Wyart, Proc. Natl. Acad. Sci. U.S.A. 108, 7315 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    M.S. Steinberg, Science 141, 401 (1963).ADSCrossRefGoogle Scholar
  12. 12.
    M.S. Steinberg, Proc. Natl. Acad. Sci. U.S.A. 48, 1769 (1962).ADSCrossRefGoogle Scholar
  13. 13.
    R.A. Foty, M.S. Steinberg, Int. J. Dev. Biol. 48, 397 (2004).CrossRefGoogle Scholar
  14. 14.
    R.A. Foty, G. Forgacs, C.M. Pfleger, M.S. Steinberg, Phys. Rev. Lett. 72, 2298 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    A. Mgharbel, H. Delanoe-Ayari, J.-P. Rieu, HFSP J. 3, 213 (2009).CrossRefGoogle Scholar
  16. 16.
    S. Douezan, F. Brochard-Wyart, Soft Matter 8, 784 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    P.-G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting phenomena: Bubbles, drops, pearls, waves (Springer, 2004).Google Scholar
  18. 18.
    S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery, M. Ibn-Ehaj, S. Schlagowski, Science 282, 916 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    C. Sykes, C. Andrieu, V. Detappe, S. Deniau, J. Phys. III 4, 775 (1994).Google Scholar
  20. 20.
    C. Redon, F. Brochard-Wyart, F. Rondelez, Phys. Rev. Lett. 66, 715 (1991).ADSCrossRefGoogle Scholar
  21. 21.
    G. Reiter, Phys. Rev. Lett. 68, 75 (1992).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Y.-L. Wang, R.J. Pelham, Methods Enzymol. 298, 489 (1998).CrossRefGoogle Scholar
  23. 23.
    X. Peng, J. Huang, L. Qin, C. Xiong, J. Fang, Acta Mech. Sin. 25, 565 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    C. Redon, J.B. Brzoska, F. Brochard-Wyart, Macromolecules 27, 468 (1994).ADSCrossRefGoogle Scholar
  25. 25.
    G. Reiter, R. Khanna, Phys. Rev. Lett. 85, 5599 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    K. Jacobs, R. Seemann, G. Schatz, S. Herminghaus, Langmuir 14, 4961 (1998).CrossRefGoogle Scholar
  27. 27.
    P.-G. de Gennes, C.R. Acad. Sci. Paris, Sér. B 288, 219 (1979).Google Scholar
  28. 28.
    T. Yeung, P.C. Georges, L.A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, P.A. Janmey, Cell Motil. Cytoskeleton 60, 24 (2005).CrossRefGoogle Scholar
  29. 29.
    D.E. Discher, P. Janmey, Y.-L. Wang, Science 310, 1139 (2005).ADSCrossRefGoogle Scholar
  30. 30.
    U. Schwarz, Soft Matter 3, 263 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    S. Douezan, J. Dumond, F. Brochard-Wyart, Soft Matter 8, 4578 (2012).ADSCrossRefGoogle Scholar
  32. 32.
    A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, D. Discher, Biophys. J. 86, 617 (2004).CrossRefGoogle Scholar
  33. 33.
    A. Saez, A. Buguin, P. Silberzan, B. Ladoux, Biophys. J. 89, 52 (2005).CrossRefGoogle Scholar
  34. 34.
    A. Saez, E. Anon, M. Guibaudo, O. du Roure, J.-M. Di Meglio, P. Hersen, P. Silberzan, A. Buguin, B. Ladoux, J. Phys.: Condens. Mater 22, 194119 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    K. Sekimoto, R. Oguma, K. Kawasaki, Ann. Phys (N.Y.) 176, 359 (1987).ADSCrossRefGoogle Scholar
  36. 36.
    L. Rayleigh, Philos. Mag. 34, 177 (1892).Google Scholar
  37. 37.
    F. Brochard-Wyart, P.-G. de Gennes, EPL 80, 36001 (2007).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut CuriePhysico-chimie Curie- UMR 168, UPMCParisFrance

Personalised recommendations