Advertisement

Motor-driven bacterial flagella and buckling instabilities

Open Access
Regular Article

Abstract

Many types of bacteria swim by rotating a bundle of helical filaments also called flagella. Each filament is driven by a rotary motor and a very flexible hook transmits the motor torque to the filament. We model it by discretizing Kirchhoff’s elastic-rod theory and develop a coarse-grained approach for driving the helical filament by a motor torque. A rotating flagellum generates a thrust force, which pushes the cell body forward and which increases with the motor torque. We fix the rotating flagellum in space and show that it buckles under the thrust force at a critical motor torque. Buckling becomes visible as a supercritical Hopf bifurcation in the thrust force. A second buckling transition occurs at an even higher motor torque. We attach the flagellum to a spherical cell body and also observe the first buckling transition during locomotion. By changing the size of the cell body, we vary the necessary thrust force and thereby obtain a characteristic relation between the critical thrust force and motor torque. We present a elaborate analytical model for the buckling transition based on a helical rod which quantitatively reproduces the critical force-torque relation. Real values for motor torque, cell body size, and the geometry of the helical filament suggest that buckling should occur in single bacterial flagella. We also find that the orientation of pulling flagella along the driving torque is not stable and comment on the biological relevance for marine bacteria.

Keywords

Living systems: Biological Matter 

Supplementary material

10189_2012_9692_MOESM1_ESM.pdf (45 kb)
Supplementary material, approximately 44.5 KB.

Supplementary material, approximately 7.25 MB

Supplementary material, approximately 2.88 MB

Supplementary material, approximately 2.88 MB

Supplementary material, approximately 2.70 MB

References

  1. 1.
    H.C. Berg, E. coli in Motion (Springer-Verlag, New York, 2004).Google Scholar
  2. 2.
    N. Darnton, L. Turner, K. Breuer, H.C. Berg, Biophys. J. 86, 1863 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    W.R. Hesse, L. Luo, G. Zhang, R. Mulero, J. Cho, M.J. Kim, Mater. Sci. Eng. C 29, 2282 (2009).CrossRefGoogle Scholar
  4. 4.
    L. Zhang, J.J. Abbott, L. Dong, B.E. Kratochvil, D. Bell, B.J. Nelson, Appl. Phys. Lett. 94, 064107 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    N.C. Darnton, L. Turner, S. Rojevsky, H. C. Berg, J. Bacteriol. 189, 1756 (2007).CrossRefGoogle Scholar
  6. 6.
    L. Turner, W.S. Ryu, H.C. Berg, J. Bacteriol. 182, 2793 (2000) see also http://webmac.rowland.org/labs/bacteria/movies_ecoli.html.CrossRefGoogle Scholar
  7. 7.
    M. Kim, J.C. Bird, A.J.V. Parys, K.S. Breuer, T.R. Powers, Proc. Natl. Acad. Sci. U.S.A. 100, 15481 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    M. Kim, T.R. Powers, Phys. Rev. E 69, 061910 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    M. Reichert, H. Stark, Eur. Phys. J. E 17, 493 (2005).CrossRefGoogle Scholar
  10. 10.
    P.J.A. Janssen, M.D. Graham, Phys. Rev. E 84, 011910 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    S. Asakura, Adv. Biophys. 1, 99 (1970).Google Scholar
  12. 12.
    C. Calladine, Nature 255, 121 (1975).ADSCrossRefGoogle Scholar
  13. 13.
    R.M. Macnab, M.K. Ornston, J. Mol. Biol. 112, 1 (1977).CrossRefGoogle Scholar
  14. 14.
    H. Hotani, J. Mol. Biol. 156, 791 (1982).ADSCrossRefGoogle Scholar
  15. 15.
    E. Hasegawa, R. Kamiya, S. Asakura, J. Mol. Biol. 160, 609 (1982).CrossRefGoogle Scholar
  16. 16.
    R.E. Goldstein, A. Goriely, G. Huber, C.W. Wolgemuth, Phys. Rev. Lett. 84, 1631 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    S.V. Srigiriraju, T.R. Powers, Phys. Rev. Lett. 94, 248101 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    N.C. Darnton, H.C. Berg, Biophys. J. 92, 2230 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    H. Wada, R.R. Netz, Europhys. Lett. 82, 28001 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    C. Speier, R. Vogel, H. Stark, Phys. Biol. 8, 046009 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    M. Schmitt, H. Stark, EPL 96, 28001 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    R. Vogel, H. Stark, Eur. Phys. J. E 33, 259 (2010).CrossRefGoogle Scholar
  23. 23.
    A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity (Dover Publications, New York, 1944).Google Scholar
  24. 24.
    C.W. Wolgemuth, T.R. Powers, R.E. Goldstein, Phys. Rev. Lett. 84, 1623 (2000).ADSCrossRefGoogle Scholar
  25. 25.
    H. Wada, R.R. Netz, Europhys. Lett. 75, 645 (2006).MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    M. Manghi, X. Schlagberger, R.R. Netz, Phys. Rev. Lett. 96, 068101 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    L. Landau, E. Lifshitz, Theory of Elasticity (Pergamon Press, 1986).Google Scholar
  28. 28.
    E.M. Purcell, Am. J. Phys. 45, 3 (1977).ADSCrossRefGoogle Scholar
  29. 29.
    S. Chattopadhyay, R. Moldovan, C. Yeung, X.L. Wu, Proc. Natl. Acad. Sci. U.S.A. 103, 13712 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    S. Chattopadhyay, X.L. Wu, Biophys. J. 96, 2023 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    M. Reichert, Ph.D. thesis, University Konstanz (2006) http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-19302.
  32. 32.
    G. Chirico, J. Langowski, Biopolymers 34, 415 (1994).CrossRefGoogle Scholar
  33. 33.
    H. Wada, R.R. Netz, EPL 77, 68001 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    H. Wada, R.R. Netz, Phys. Rev. Lett. 99, 108102 (2007).ADSCrossRefGoogle Scholar
  35. 35.
    C.J. Jones, R.M. Macnab, H. Okino, S.-I. Aizawa, J. Mol. Biol. 212, 377 (1990).CrossRefGoogle Scholar
  36. 36.
    K. Kobayashi, T. Saitoh, D.S.H. Shah, K. Ohnishi, I.G. Goodfellow, R.E. Sockett, S.-I. Aizawa, J. Bacteriol. 185, 5295 (2003).CrossRefGoogle Scholar
  37. 37.
    F.A. Samatey, H. Matsunami, K. Imada, S. Nagashima, T.R. Shaikh, D.R. Thomas, J.Z. Chen, D.J. DeRosier, A. Kitao, K. Namba, Nature 431, 1062 (2004).ADSCrossRefGoogle Scholar
  38. 38.
    T.R. Shaikh, D.R. Thomas, J.Z. Chen, F.A. Samatey, H. Matsunami, K. Imada, K. Namba, D.J. Derosier, Proc. Natl. Acad. Sci. U.S.A. 102, 1023 (2005).ADSCrossRefGoogle Scholar
  39. 39.
    T. Furuta, F.A. Samatey, H. Matsunami, K. Imada, K. Namba, A. Kitao, J. Struct. Biol. 157, 481 (2007).CrossRefGoogle Scholar
  40. 40.
    J. Lighthill, SIAM Rev. 18, 161 (1976).MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    S. Childress, Mechanics of swimming and flying (Cambridge University Press, 1981).Google Scholar
  42. 42.
    L. Landau, E. Lifshitz, Mechanics (Pergamon Press, 1976).Google Scholar
  43. 43.
    V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, 1978). .Google Scholar
  44. 44.
    J. Haringx, Proc. Ned. Akad. Wet. 45, 533.Google Scholar
  45. 45.
    J. Haringx, Philips Res. Rep. 3, 401 (1948).Google Scholar
  46. 46.
    C. Biezeno, R. Grammel, Technische Dynamik (Springer, 1939).Google Scholar
  47. 47.
    D. Karpeev, I.S. Aranson, L.S. Tsimring, H.G. Kaper, Phys. Rev. E 76, 051905 (2007).ADSCrossRefGoogle Scholar
  48. 48.
    M. Fujii, S. Shibata, S.-I. Aizawa, J. Mol. Biol. 379, 273 (2008).CrossRefGoogle Scholar
  49. 49.
    S.E. Spagnolie, E. Lauga, Phys. Rev. Lett. 106, 058103 (2011).ADSCrossRefGoogle Scholar
  50. 50.
    R.H. Luchsinger, B. Bergersen, J.G. Mitchell, Biophys. J. 77, 2377 (1999).CrossRefGoogle Scholar
  51. 51.
    L. Xie, T. Altindal, S. Chattopadhyay, X.-L. Wu, Proc. Natl. Acad. Sci. U.S.A. 108, 2246 (2011).ADSCrossRefGoogle Scholar
  52. 52.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Springer, 1983).Google Scholar

Copyright information

© The Author(s) 2012

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsTU BerlinBerlinGermany

Personalised recommendations