Advertisement

Conformational dynamics and internal friction in homopolymer globules: equilibrium vs. non-equilibrium simulations

  • T. R. Einert
  • C. E. Sing
  • A. Alexander-Katz
  • R. R. Netz
Regular Article

Abstract

We study the conformational dynamics within homopolymer globules by solvent-implicit Brownian dynamics simulations. A strong dependence of the internal chain dynamics on the Lennard-Jones cohesion strength \( \varepsilon\) and the globule size N G is observed. We find two distinct dynamical regimes: a liquid-like regime (for \( \varepsilon\) < \( \varepsilon_{{\rm s}}^{}\) with fast internal dynamics and a solid-like regime (for \( \varepsilon\) > \( \varepsilon_{{\rm s}}^{}\) with slow internal dynamics. The cohesion strength \( \varepsilon_{{\rm s}}^{}\) of this freezing transition depends on N G . Equilibrium simulations, where we investigate the diffusional chain dynamics within the globule, are compared with non-equilibrium simulations, where we unfold the globule by pulling the chain ends with prescribed velocity (encompassing low enough velocities so that the linear-response, viscous regime is reached). From both simulation protocols we derive the internal viscosity within the globule. In the liquid-like regime the internal friction increases continuously with \( \varepsilon\) and scales extensive in N G . This suggests an internal friction scenario where the entire chain (or an extensive fraction thereof) takes part in conformational reorganization of the globular structure.

Keywords

Internal Friction Internal Dynamic Cohesive Strength Mean Square Displacement Linker Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Chuang, Y. Kantor, M. Kardar, Phys. Rev. E 65, 011802 (2001)CrossRefADSGoogle Scholar
  2. 2.
    R. Bundschuh, U. Gerland, Phys. Rev. Lett. 95, 208104 (2005)CrossRefADSGoogle Scholar
  3. 3.
    K. Luo, T. Ala-Nissila, S.C. Ying, R. Metzler, Europhys. Lett. 88, 68006 (2009)CrossRefADSGoogle Scholar
  4. 4.
    N. Gunari, A.C. Balazs, G.C. Walker, J. Am. Chem. Soc. 129, 10046 (2007)CrossRefGoogle Scholar
  5. 5.
    M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub, Science 276, 1109 (1997)CrossRefGoogle Scholar
  6. 6.
    D.B. Staple, S.H. Payne, A.L.C. Reddin, H.J. Kreuzer, Phys. Rev. Lett. 101, 248301 (2008)CrossRefADSGoogle Scholar
  7. 7.
    M. Mandal, R.R. Breaker, Nat. Rev. Mol. Cell Biol. 5, 451 (2004)CrossRefGoogle Scholar
  8. 8.
    P.G. de Gennes, J. Chem. Phys. 55, 572 (1971)CrossRefADSGoogle Scholar
  9. 9.
    G.S. Jas, W.A. Eaton, J. Hofrichter, J. Phys. Chem. B 105, 261 (2001)CrossRefGoogle Scholar
  10. 10.
    S.A. Pabit, H. Roder, S.J. Hagen, Biochemistry 43, 12532 (2004)CrossRefGoogle Scholar
  11. 11.
    F. Graeter, P. Heider, R. Zangi, B.J. Berne, J. Am. Chem. Soc. 130, 11578 (2008)CrossRefGoogle Scholar
  12. 12.
    D.E. Sagnella, J.E. Straub, D. Thirumalai, J. Chem. Phys. 113, 7702 (2000)CrossRefADSGoogle Scholar
  13. 13.
    A.Y. Grosberg, S.K. Nechaev, E.I. Shakhnovich, J. Phys. (Paris) 49, 2095 (1988)Google Scholar
  14. 14.
    A. Grosberg, Y. Rabin, S. Havlin, A. Neer, Europhys. Lett. 23, 373 (1993)CrossRefADSGoogle Scholar
  15. 15.
    E. Lieberman-Aiden, N.L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling, I. Amit, B.R. Lajoie, P.J. Sabo, M.O. Dorschner et al., Science 326, 289 (2009)CrossRefADSGoogle Scholar
  16. 16.
    M.G. Poirier, A. Nemani, P. Gupta, S. Eroglu, J.F. Marko, Phys. Rev. Lett. 86, 360 (2001)CrossRefADSGoogle Scholar
  17. 17.
    T. Frisch, A. Verga, Phys. Rev. E 65, 041801 (2002)CrossRefADSGoogle Scholar
  18. 18.
    N.A. Denesyuk, J.D. Weeks, Phys. Rev. Lett. 102, 108101 (2009)CrossRefADSGoogle Scholar
  19. 19.
    C.F. Abrams, N.K. Lee, S.P. Obukhov, Europhys. Lett. 59, 391 (2002)CrossRefADSGoogle Scholar
  20. 20.
    A. Serr, C. Sendner, F. Mü, Europhys. Lett. 92, 38002 (2010)CrossRefADSGoogle Scholar
  21. 21.
    F. Celestini, T. Frisch, X. Oyharcabal, Phys. Rev. E 70, 012801 (2004)CrossRefADSGoogle Scholar
  22. 22.
    J. Chuang, A.Y. Grosberg, T. Tanaka, J. Chem. Phys. 112, 6434 (2000)CrossRefADSGoogle Scholar
  23. 23.
    V. Barsegov, G. Morrison, D. Thirumalai, Phys. Rev. Lett. 100, 248102 (2008)CrossRefADSGoogle Scholar
  24. 24.
    B.S. Khatri, M. Kawakami, K. Byrne, D.A. Smith, T.C.B. McLeish, Biophys. J. 92, 1825 (2007)CrossRefADSGoogle Scholar
  25. 25.
    Y. von Hansen, F. Sedlmeier, M. Hinczewski, R.R. Netz, Phys. Rev. E 84, 051501 (2011)CrossRefADSGoogle Scholar
  26. 26.
    A.E. Filippov, J. Klafter, M. Urbakh, Phys. Rev. Lett. 92, 135503 (2004)CrossRefADSGoogle Scholar
  27. 27.
    Y. Murayama, H. Wada, M. Sano, Europhys. Lett. 79, 58001 (2007)CrossRefADSGoogle Scholar
  28. 28.
    A.V. Finkelstein, O.V. Galzitskaya, Phys. Life Rev. 1, 23 (2004)CrossRefADSGoogle Scholar
  29. 29.
    R. Gerber, A. Tahiri-Alaoui, P.J. Hore, W. James, J. Biol. Chem. 282, 6300 (2007)CrossRefGoogle Scholar
  30. 30.
    R. Zwanzig, Proc. Natl. Acad. Sci. U.S.A. 85, 2029 (1988)CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    C. Hyeon, D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 100, 10249 (2003)CrossRefADSGoogle Scholar
  32. 32.
    A. Alexander-Katz, H. Wada, R.R. Netz, Phys. Rev. Lett. 103, 028102 (2009)CrossRefADSGoogle Scholar
  33. 33.
    M. Hinczewski, Y. von Hansen, J. Dzubiella, R.R. Netz, J. Chem. Phys. 132, 245103 (2010)CrossRefADSGoogle Scholar
  34. 34.
    R.B. Best, G. Hummer, Proc. Natl. Acad. Sci. U.S.A. 107, 1088 (2010)CrossRefADSGoogle Scholar
  35. 35.
    D.K. Klimov, D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 96, 6166 (1999)CrossRefADSGoogle Scholar
  36. 36.
    N. Yoshinaga, K. Yoshikawa, T. Ohta, Eur. Phys. J. E 17, 485 (2005)CrossRefGoogle Scholar
  37. 37.
    G. Morrison, C. Hyeon, N.M. Toan, B.Y. Ha, D. Thirumalai, Macromolecules 40, 7343 (2007)CrossRefADSGoogle Scholar
  38. 38.
    O. Braun, U. Seifert, Europhys. Lett. 68, 746 (2004)CrossRefADSGoogle Scholar
  39. 39.
    R. Metzler, W. Reisner, R. Riehn, R. Austin, J.O. Tegenfeldt, I.M. Sokolov, Europhys. Lett. 76, 696 (2006)CrossRefADSGoogle Scholar
  40. 40.
    A. Vologodskii, Biophys. J. 90, 1594 (2006)CrossRefADSGoogle Scholar
  41. 41.
    L. Huang, D.E. Makarov, J. Phys. Chem. A 111, 10338 (2007)CrossRefGoogle Scholar
  42. 42.
    C.E. Sing, T.R. Einert, R.R. Netz, A. Alexander-Katz, Phys. Rev. E 83, 040801(R) (2011)CrossRefADSGoogle Scholar
  43. 43.
    D.F. Parsons, D.R.M. Williams, Phys. Rev. E 74, 041804 (2006)CrossRefADSGoogle Scholar
  44. 44.
    D.F. Parsons, D.R.M. Williams, J. Chem. Phys. 124, 221103 (2006)CrossRefADSGoogle Scholar
  45. 45.
    W. Paul, T. Strauch, F. Rampf, K. Binder, Phys. Rev. E 75, 060801 (2007)CrossRefADSGoogle Scholar
  46. 46.
    F. Rampf, W. Paul, K. Binder, Europhys. Lett. 70, 628 (2005)CrossRefADSGoogle Scholar
  47. 47.
    Y. Zhou, C.K. Hall, M. Karplus, Phys. Rev. Lett. 77, 2822 (1996)CrossRefADSGoogle Scholar
  48. 48.
    M.P. Taylor, W. Paul, K. Binder, J. Chem. Phys. 131, 114907 (2009)CrossRefADSGoogle Scholar
  49. 49.
    V.G. Rostiashvili, G. Migliorini, T.A. Vilgis, Phys. Rev. E 64, 051112 (2001)CrossRefADSGoogle Scholar
  50. 50.
    H. Liang, H. Chen, J. Chem. Phys. 113, 4469 (2000)CrossRefADSGoogle Scholar
  51. 51.
    J. Torres, P. Nealey, J. de Pablo, Phys. Rev. Lett. 85, 3221 (2000)CrossRefADSGoogle Scholar
  52. 52.
    T.S. Jain, J.J. de Pablo, Macromolecules 35, 2167 (2002)CrossRefADSGoogle Scholar
  53. 53.
    F. Varnik, J. Baschnagel, K. Binder, Phys. Rev. E 65, 021507 (2002)CrossRefADSGoogle Scholar
  54. 54.
    J. Baschnagel, F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005)CrossRefADSGoogle Scholar
  55. 55.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, 1999)Google Scholar
  56. 56.
    W.T. Coffey, The Langevin Equation (World Scientific, 2005)Google Scholar
  57. 57.
    D.L. Ermak, J.A. McCammon, J. Chem. Phys. 69, 1352 (1978)CrossRefADSGoogle Scholar
  58. 58.
    J.C.M. Gebhardt, T. Bornschlögl, M. Rief, Proc. Natl. Acad. Sci. U.S.A. 107, 2013 (2010)CrossRefADSGoogle Scholar
  59. 59.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 1989)Google Scholar
  60. 60.
    A. Alexander-Katz, M.F. Schneider, S.W. Schneider, A. Wixforth, R.R. Netz, Phys. Rev. Lett. 97, 138101 (2006)CrossRefADSGoogle Scholar
  61. 61.
    D. Vitkup, D. Ringe, G.A. Petsko, M. Karplus, Nat. Struct. Biol. 7, 34 (2000)CrossRefGoogle Scholar
  62. 62.
    M. Abramowitz, I.A. Stegun (Editors), Handbook of Mathematical Functions, tenth edn. (U.S. Department of Commerce, 2002)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • T. R. Einert
    • 1
  • C. E. Sing
    • 2
  • A. Alexander-Katz
    • 2
  • R. R. Netz
    • 3
  1. 1.Physik DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Fachbereich PhysikFreie Universität BerlinBerlinGermany

Personalised recommendations