Effect of a capillary meniscus on the Faraday instability threshold

Regular Article

Abstract

Threshold for Faraday instability has been experimentally measured for slightly viscous liquids. Changing the size of the container containing the fluid allows us to emphasize the role played by the capillary meniscus on the onset for instability. As the container is getting smaller, an upset of the critical acceleration is observed. Below a given container diameter, eigenmodes are observed along the stability curve. A dissipation term is proposed for considering the viscous dissipation against the walls of the container.

Keywords

Contact Angle Free Surface Surface Wave Contact Line Viscous Dissipation 

References

  1. 1.
    M. Faraday, Philos. Trans. R. Soc. London 121, 299 (1831).CrossRefGoogle Scholar
  2. 2.
    H.W. Müller, Phys. Rev. Lett. 71, 3287 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    W.S. Edwards, S. Fauve, J. Fluid Mech. 278, 123 (1994).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    D. Binks, W. van de Water, Phys. Rev. Lett. 78, 4043 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    S. Douady, S. Fauve, Europhys. Lett. 6, 221 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    W.S. Edwards, S. Fauve, J. Fluid Mech. 278, 123 (1994).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A. Kudrolli, J.P. Gollub, Physica D 97, 133 (1996).CrossRefGoogle Scholar
  8. 8.
    C.L. Goodridge, H.G.E. Hentschel, D.P. Lathrop, Phys. Rev. Lett. 82, 3062 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    F. Zoueshtiagh, S. Amiroudine, R. Narayanan, J. Fluid Mech. 628, 43 (2009).ADSMATHCrossRefGoogle Scholar
  10. 10.
    J.W. Miles, Proc. R. Soc. London, Ser. A 297, 459 (1967).ADSCrossRefGoogle Scholar
  11. 11.
    J.W. Miles, J. Fluid Mech. 245, 485 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    M. Perlin, W.W. Schultz, Annu. Rev. Fluid Mech. 32, 241 (2000).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    T.B. Benjamin, F. Ursell, Proc. R. Soc. London, Ser. A 225, 505 (1954).MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    L. Landau, E. Lifchitz, Mécanique des fluides (Mir, Moscow, 1971).Google Scholar
  15. 15.
    M. Perlin, W.W. Schultz, Annu. Rev. Fluid Mech. 32, 241 (2000).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    K. Kumar, L.S. Tuckerman, J. Fluid Mech. 279, 49 (1994).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    K. Kumar, Proc. R. Soc. London, Ser. A 452, 1113 (1996).ADSMATHCrossRefGoogle Scholar
  18. 18.
    H.W. Müller, Lect. Notes Phys. 503, 45 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    S. Douady, J. Fluid Mech. 221, 383 (1990).ADSCrossRefGoogle Scholar
  20. 20.
    J.V. Wehausen, E.V. Laitone, Encyclopediæof Physics, Vol. 9: Surface waves in Fluid Dynamics III (Springer-Verlag, 1960).Google Scholar
  21. 21.
    A. Eddi, E. Fort, F. Moisy, Y. Couder, Phys. Rev. Lett. 102, 240401 (2009).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.École Supérieure de Physique et de Chimie IndustriellesPMMHParisFrance
  2. 2.GRASP, Physics Department B5University of LiègeLiègeBelgium

Personalised recommendations