Structuring from nanoparticles in oil-based ferrofluids

  • Z. Rozynek
  • A. Józefczak
  • K. D. Knudsen
  • A. Skumiel
  • T. Hornowski
  • J. O. Fossum
  • M. Timko
  • P. Kopčanský
  • M. Koneracká
Open Access
Regular Article


The effect of magnetic field on the structure formation in an oil-based magnetic fluid with various concentrations of magnetite particles was studied. The evaluation of the experimental data obtained from small-angle X-ray scattering and ultrasonic attenuation indicates the formation of chain-like aggregates composed of magnetite particles. The experimental data obtained from ultrasonic spectroscopy fit well with the recent theoretical model by Shliomis, Mond and Morozov but only for a diluted magnetic fluid. In this model it is assumed that a dimer is the main building block of a B -field-induced chain-like structure, thus the estimation of the nematic order parameter does not depend on the actual length of the structure. The scattering method used reveals information about the aggregated structure size and relative changes in the degree of anisotropy in qualitative terms. The coupling constant \( \lambda\) , concentrations \( \phi\) , average particle size d and its polydispersity \( \sigma\) were initially obtained using the vibrating sample magnetometry and these results were further confirmed by rheometry and scattering methods. Both the particles’ orientational distribution and the nematic order parameter S were inferred from the ultrasonic measurements. The investigation of SAXS patterns reveals the orientation and sizes of aggregated structures under application of different magnetic-field strengths. In addition, the magnetic-field-dependent yield stress was measured, and a relationship between the yield stress and magnetic-field strength up to 0.5T was established.


Vibrate Sample Magnetometer Dependent Tail Magnetite Particle Ultrasonic Attenuation Vibrate Sample Magnetometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Odenbach, J. Phys.: Condens. Matter 16, 1135 (2004)CrossRefADSGoogle Scholar
  2. 2.
    M. Raşa, Eur. Phys. J. 2, 265 (2000)Google Scholar
  3. 3.
    D. Eberbeck, F. Wiekhorst, U. Steinhoff, L. Trahms, J. Phys.: Condens. Matter 18, 2829 (2006)CrossRefADSGoogle Scholar
  4. 4.
    S. Odenbach, K. Raj, Magnetohydrodynamics 36, 312 (2000)CrossRefMATHGoogle Scholar
  5. 5.
    H. Shahnazian, S. Odenbach, J. Phys.: Condens. Matter 20, 204137 (2008)CrossRefADSGoogle Scholar
  6. 6.
    A. Józefczak, A. Skumiel, J. Phys.: Condens. Matter 18, 1869 (2006)CrossRefADSGoogle Scholar
  7. 7.
    F.L.O. Paula, R. Aquino, G.J. da Silva, J. Depeyrot, F.A. Tourinho, J.O. Fossum, K.D. Knudsen, J. Appl. Cryst. 40, 269 (2007)CrossRefGoogle Scholar
  8. 8.
    F.L.O. Paula, G.J. da Silva, J.O. Fossum, K.D. Knudsen, G. Helgesen, R. Aquino, F.A. Tourinho, J. Depeyrot, Braz. J. Phys. 39, 163 (2009)Google Scholar
  9. 9.
    H. Shahnazian, S. Odenbach, Phys. Rev. B 67, 094206 (2003)CrossRefGoogle Scholar
  10. 10.
    P. Davidson, D. Petermann, A.M. Levelut, J. Phys. II 5, 113 (1995)CrossRefGoogle Scholar
  11. 11.
    L.M. Pop, S. Odenbach, J. Phys.: Condens. Matter 18, 2785 (2006)CrossRefADSGoogle Scholar
  12. 12.
    A.J. Leadbetter, E.K. Norris, Mol. Phys. 38, 669 (1979)CrossRefADSGoogle Scholar
  13. 13.
    M. Shliomis, M. Mond, K. Morozov, Phys. Rev. Lett. 101, 074505 (2008)CrossRefADSGoogle Scholar
  14. 14.
    F. Herchl, P. Kopčanský, M. Timko, M. Koneracká, K. Marton, I. Kolcunová, L. Tomčo, Acta Phys. Pol. A 113, 569 (2008)Google Scholar
  15. 15.
    C. Holm, J.J. Weis, Curr. Opin. Colloid Interface Sci. 10, 133 (2005)CrossRefGoogle Scholar
  16. 16.
    A. Skumiel, Int. J. Thermophys. 31, 546 (2010)CrossRefADSGoogle Scholar
  17. 17.
    A. Skumiel, T. Hornowski, A. Józefczak, Int. J. Thermophys. DOI 10.1007/s10765-010-0799-4 (2011)Google Scholar
  18. 18.
    K.P. Vishwanath, A. Kandasamy, Appl. Math. Mod. 34, 219 (2010)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    A.N. Alexandrou, T.M. McGilvreay, G. Burgos, J. Non-Newtonian Fluid Mech. 100, 77 (2001)CrossRefMATHGoogle Scholar
  20. 20.
    M. Klokkenburg, B.H. Erné, A. Wiedenmann, A.V. Petukov, A.P. Philipse, Phys. Rev. E 75, 051408 (2007)CrossRefADSGoogle Scholar
  21. 21.
    A.Y. Zubarev, L.Y. Iskakova, Physica A 365, 265 (2006)CrossRefADSGoogle Scholar
  22. 22.
    O. Glatter, O. Kratky, Small-Angle X-ray Scattering (Academic, New York, 1982)Google Scholar
  23. 23.
    P. Linder, T. Zemb, Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter (North Holland, 2002)Google Scholar
  24. 24.
    W. Bras, I.P. Dolbnya, D. Detollenaere, R. van Tol, M. Malfois, G.N. Greaves, A.J. Ryan, E. Heeley, J. Appl. Cryst. 36, 791 (2003)CrossRefGoogle Scholar
  25. 25.
    F. Dobrich, A. Michels, R. Birringer, J. Magn. & Magn. Mater. 316, 779 (2007)CrossRefADSGoogle Scholar
  26. 26.
    A.V. Teixeira, I. Morfin, F. Ehrburger-Dolle, C. Rochas, P. Panine, P. Licinio, E. Geissler, Compos. Sci. Technol. 63, 1105 (2003)CrossRefGoogle Scholar
  27. 27.
    B.J. Lemaire, P. Panine, J.C.P. Gabriel, P. Davidson, Europhys. Lett. 59, 55 (2002)CrossRefADSGoogle Scholar
  28. 28.
    S. Taketomi, J. Phys. Soc. Jpn. 55, 838 (1986)CrossRefADSGoogle Scholar
  29. 29.
    H. Pleiner, H.R. Brand, J. Magn. & Magn. Mater. 85, 125 (1990)CrossRefADSGoogle Scholar
  30. 30.
    V.V. Sokolov, Acoust. Phys. 56, 972 (2010)CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Z. Rozynek
    • 1
  • A. Józefczak
    • 2
  • K. D. Knudsen
    • 3
  • A. Skumiel
    • 2
  • T. Hornowski
    • 2
  • J. O. Fossum
    • 1
  • M. Timko
    • 4
  • P. Kopčanský
    • 4
  • M. Koneracká
    • 4
  1. 1.Department of PhysicsNTNUTrondheimNorway
  2. 2.Institute of Acoustics, Faculty of PhysicsUAMPoznańPoland
  3. 3.Physics DepartmentIFEKjellerNorway
  4. 4.Institute of Experimental PhysicsSAVKošiceSlovakia

Personalised recommendations