RAFT “grafting-through” approach to surface-anchored polymers: Electrodeposition of an electroactive methacrylate monomer

  • C. D. Grande
  • M. C. Tria
  • M. J. Felipe
  • F. Zuluaga
  • R. Advincula
Open Access


The synthesis of homopolymer and diblock copolymers on surfaces was demonstrated using electrodeposition of a methacrylate-functionalized carbazole dendron and subsequent reversible addition-fragmentation chain transfer (RAFT) “grafting-through” polymerization. First, the anodically electroactive carbazole dendron with methacrylate moiety (G1CzMA) was electrodeposited over a conducting surface (i.e. gold or indium tin oxide (ITO)) using cyclic voltammetry (CV). The electrodeposition process formed a crosslinked layer of carbazole units bearing exposed methacrylate moieties. This film was then used as the surface for RAFT polymerization process of methyl methacrylate (MMA), styrene (S), and tert-butyl acrylate (TBA) in the presence of a free RAFT agent and a free radical initiator, resulting in grafted polymer chains. The molecular weights and the polydispersity indices (PDI) of the sacrificial polymers were determined by gel permeation chromatography (GPC). The stages of surface modification were investigated using X-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM) to confirm the surface composition, thickness, and film morphology, respectively. UV-Vis spectroscopy also confirmed the formation of an electro-optically active crosslinked carbazole film with a \( \pi\) - \( \pi^{{\ast}}_{}\) absorption band from 450-650nm. Static water contact angle measurements confirmed the changes in surface energy of the ultrathin films with each modification step. The controlled polymer growth from the conducting polymer-modified surface suggests the viability of combining electrodeposition and grafting-through approach to form functional polymer ultrathin films.


PMMA Carbazole Diblock Copolymer Methacryloyl Chloride Contact Angle Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.C. Advincula, W.J. Brittain, K.C. Caster, J. Ruhe, Polymer Brushes: Synthesis, Characterization, Applications (Wiley-VCH, New York, 2004)Google Scholar
  2. 2.
    L.F. Thompson, C.G.M.J. Bowden, Introduction to Micro\-litography, 2nd edition (Willson, American Chemical Society, Washington DC, 1994)Google Scholar
  3. 3.
    J. Ruhe, V. Novotny, T. Clarke, G.B. Street, J. Tribol. Trans. ASME 118, 663 (1996)CrossRefGoogle Scholar
  4. 4.
    M. Tirrel, E. Kokkoli, M. Biesalski, Surf. Sci. 500, 61 (2002)CrossRefADSGoogle Scholar
  5. 5.
    J.P. Andrade, Surface and Interfacial Aspects of Biomedical Polymers (Plenum Press, New York, 1985)Google Scholar
  6. 6.
    W.A. Levinson, A. Arnold, O. Dehodgins, Polym. Eng. Sci. 33, 980 (1993)CrossRefGoogle Scholar
  7. 7.
    P. Yimsiri, M.R. Mackley, Chem. Eng. Sci. 61, 3496 (2006)CrossRefGoogle Scholar
  8. 8.
    G. Decher, Science 277, 1232 (1997)CrossRefGoogle Scholar
  9. 9.
    J. Park, S. Lee, H. Lee, Org. Electron. 7, 256 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Minko, S. Patil, V. Datsyuk, F. Simon, K.J. Eichhorn, M. Motornov, D. Usov, I. Tokarev, M. Stamm, Langmuir 18, 289 (2002)CrossRefGoogle Scholar
  11. 11.
    B. Zhao, W.J. Brittain, Prog. Polym. Sci. 25, 677 (2000)CrossRefGoogle Scholar
  12. 12.
    J. Pyun, T. Kowalewski, K. Matyjaszewski, Macromol. Rapid. Commun. 24, 1043 (2003)CrossRefGoogle Scholar
  13. 13.
    K.P. Krenkler, R. Laible, K. Hamann, Angew. Makrom. Chem. 53, 101 (1953)CrossRefGoogle Scholar
  14. 14.
    A.V. Dmitrenko, N.E. Shadrina, S.S. Ivanchev, N.N. Ulinskaya, A.M. Volkov, J. Chromatogr. 520, 21 (1990)CrossRefGoogle Scholar
  15. 15.
    K. Hashimoto, T. Fujisawa, M. Kobayashi, R. Yosomiya, J. Macromol. Sci.-Chem. A18, 173 (1982)CrossRefGoogle Scholar
  16. 16.
    K. Hashimoto, T. Fujisawa, M. Kobayashi, R. Yosomiya, J. Appl. Polym. Sci. 27, 4529 (1982)CrossRefGoogle Scholar
  17. 17.
    V.I. Trachenko, Y.N. Zil’berman, T.F. Shatskaya, E.G. Pomerantseva, Polym. Sci., USSR 28, 646 (1986)CrossRefGoogle Scholar
  18. 18.
    N.B. Zhitenev, A. Sidorenko, D.M. Tennant, R.A. Cirelli, Nat. Nanotech. 2, 237 (2007)CrossRefADSGoogle Scholar
  19. 19.
    S.Y. Jang, G.A. Sotzing, Macromolecules 37, 4351 (2004)CrossRefADSGoogle Scholar
  20. 20.
    G. Zotti, R.A. Marin, M.C. Gallazzi, Chem. Mater. 9, 2945 (1997)CrossRefGoogle Scholar
  21. 21.
    S.Y. Jang, G.A. Sotzing, M. Marquez, Macromolecules 35, 7293 (2002)CrossRefADSGoogle Scholar
  22. 22.
    N. DiCesare, M. Belletete, C. Marrano, M. Leclerc, G. Durocher, J. Phys. Chem. A 103, 795 (1999)CrossRefGoogle Scholar
  23. 23.
    P. Taranekar, A. Baba, T. Fulghum, R. Advincula, Macromolecules 38, 3679 (2005)CrossRefADSGoogle Scholar
  24. 24.
    C.J. Xia, R.C. Advincula, Macromolecules 34, 5854 (2001)CrossRefADSGoogle Scholar
  25. 25.
    A. Baba, K. Onishi, W. Knoll, R.C. Advincula, J. Phys. Chem. B 108, 18949 (2004)CrossRefGoogle Scholar
  26. 26.
    P. Taranekar, A. Baba, T.M. Fulghum, R. Advincula, Macromolecules 38, 3679 (2005)CrossRefADSGoogle Scholar
  27. 27.
    T. Fulghum, S.M.A. Karim, A. Baba, P. Taranekar, T. Nakai, T. Masuda, R.C. Advincula, Macromolecules 39, 1467 (2006)CrossRefADSGoogle Scholar
  28. 28.
    P. Waenkaew, P. Taranekar, P. Phanichphant, R. Advincula, Macromol. Rapid Commun. 28, 1522 (2007)CrossRefGoogle Scholar
  29. 29.
    B. Romero, M. Schaer, M. Leclerc, D. Ades, A. Siove, L. Zuppiroli, Synth. Met. 80, 271 (1996)CrossRefGoogle Scholar
  30. 30.
    Z.H. Peng, Z.N. Bao, M.E. Galvin, Chem. Mater. 10, 2086 (1998)CrossRefGoogle Scholar
  31. 31.
    A. Van Dijken, J.J.A.M. Bastiaansen, N.M.M. Kiggen, B.M.W. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stossel, K. Brunner, J. Am. Chem. Soc. 126, 7718 (2004)CrossRefGoogle Scholar
  32. 32.
    B. Kippelen, K. Tamura, N. Peyghambarian, A.B. Padias, H.K. Hall, Phys. Rev. B 48, 10710 (1993)CrossRefADSGoogle Scholar
  33. 33.
    Y.D. Zhang, T. Wada, H. Sasabe, J. Mater. Chem. 8, 809 (1998)CrossRefGoogle Scholar
  34. 34.
    I. Schwendeman, R. Hickman, G. Sonmez, P. Schottland, K. Zong, D.M. Welsh, J.R. Reynolds, Chem. Mater. 14, 3118 (2002)CrossRefGoogle Scholar
  35. 35.
    D. Witker, J.R. Reynolds, Macromolecules 38, 7636 (2005)CrossRefADSGoogle Scholar
  36. 36.
    Q.D. Ling, Y. Song, S.J. Ding, C.X. Zhu, D.S.H. Chan, D.L. Kwong, E.T. Kang, K.G. Neoh, Adv. Mater. 17, 455 (2005)CrossRefGoogle Scholar
  37. 37.
    P. Taranekar, T. Fulghum, A. Baba, D. Patton, R. Advincula, Langmuir 23, 908 (2007)CrossRefGoogle Scholar
  38. 38.
    C. Huang, G. Jiang, R. Advincula, Macromolecules 41, 4661 (2008)CrossRefADSGoogle Scholar
  39. 39.
    Z. Peng, Z. Bao, M.E. Galvin, Chem. Mater. 10, 2086 (1998)CrossRefGoogle Scholar
  40. 40.
    B. Liu, W.L. Yu, Y.H. Lai, W. Huang, Chem. Mater. 13, 1984 (2001)CrossRefGoogle Scholar
  41. 41.
    C. Xia, X.W. Fan, M.K. Park, R.C. Advincula, Langmuir 17, 7893 (2001)CrossRefGoogle Scholar
  42. 42.
    P. Taranekar, X.W. Fan, R. Advincula, Langmuir 18, 7943 (2002)CrossRefGoogle Scholar
  43. 43.
    P. Taranekar, J.Y. Park, T. Fulghum, D. Patton, R. Advincula, Adv. Mater. 18, 2461 (2006)CrossRefGoogle Scholar
  44. 44.
    P. Taranekar, T. Fulghum, D. Patton, R. Ponnapati, G. Clyde, R. Advincula, J. Am. Chem. Soc. 129, 12537 (2007)CrossRefGoogle Scholar
  45. 45.
    J. Chiefari, Y. Chong, F. Ercole, J. Krstina, J. Jeffrey, T. Le, R. Mayadunne, G. Meijs, C. Moad, G. Moad, E. Rizzardo, S. Thang, Macromolecules 31, 5559 (1998)CrossRefADSGoogle Scholar
  46. 46.
    Z. Bo, W. Zhang, X. Zhang, C. Zhang, J. Shen, Macromol. Chem. Phys. 199, 1323 (1998)CrossRefGoogle Scholar
  47. 47.
    Y. Fu, Y. Li, J. Li, S. Yan, Z. Bo, Macromolecules 37, 6395 (2004)CrossRefADSGoogle Scholar
  48. 48.
    H.G. Tompkins, W.A. McGahan, Spectroscopic Ellipsometry and Reflectometry (John Wiley & Sons Inc., USA, 1999)Google Scholar
  49. 49.
    K. Matyjaszewski, T.P. Davis, Handbook of Radical Polymerization (Wiley-Interscience, New York, 2002)Google Scholar
  50. 50.
    J. Raula, J. Shan, M. Nuopponen, A. Niskanen, H. Jiang, E.I. Kauppinen, H. Tenhu, Langmuir 19, 3499 (2003)CrossRefGoogle Scholar
  51. 51.
    C. McCormick, A. Lowe, Acc. Chem. Res. 37, 312 (2004)CrossRefGoogle Scholar
  52. 52.
    T.M. Fulghum, P. Taranekar, R. Advincula, Macromolecules 41, 5681 (2008)CrossRefADSGoogle Scholar
  53. 53.
    S. Hayashida, K. Sukegawa, O. Niwa, Synth. Met. 35, 253 (1990)CrossRefGoogle Scholar
  54. 54.
    M.H. Stenzel, L. Zhang, W.T.S. Huck, Macromol. Rapid Commun. 27, 1121 (2006)CrossRefGoogle Scholar
  55. 55.
    R. Ranjan, W.J. Brittain, Macromol. Rapid Commun. 28, 2084 (2007)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • C. D. Grande
    • 1
    • 2
  • M. C. Tria
    • 1
  • M. J. Felipe
    • 1
  • F. Zuluaga
    • 2
  • R. Advincula
    • 1
  1. 1.Department of Chemistry and Department of Chemical and Biomolecular EngineeringUniversity of HoustonHoustonUSA
  2. 2.Departamento de QuimicaUniversidad del ValleCaliColombia

Personalised recommendations